Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
|
|
---|---|---|
Page(s) | 5467 - 5479 | |
DOI | https://doi.org/10.1051/ro/2024212 | |
Published online | 16 December 2024 |
- C.L. Armada and S.R. Canoy Jr., A-differential of graphs. Int. J. Math. Anal. 9 (2015) 2171–2180. [CrossRef] [Google Scholar]
- L.A. Basilio, S. Bermudo and J.M. Sigarreta, Bounds on the differential of a graph. Util. Math. 103 (2017) 319–334. [MathSciNet] [Google Scholar]
- L.A. Basilio, S. Bermudo, J. Lea˜nos and J.M. Sigarreta, β-differential of a graph. Symmetry 9 (2017) 205. [CrossRef] [Google Scholar]
- L.A. Basilio-Hernández, W. Carballosa, J. Lea˜nos and J.M. Sigarreta, On the differential polynomial of a graph. Acta Math. Sin. English Ser. 35 (2019) 338–354. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bermudo, Total domination on tree operators. Mediterr. J. Math. 20 (2023) 42. [CrossRef] [Google Scholar]
- S. Bermudo and H. Fernau, Lower bound on the differential of a graph. Discret. Math. 312 (2012) 3236–3250. [CrossRef] [Google Scholar]
- S. Bermudo and H. Fernau, Computing the differential of a graph: hardness, approximability and exact algorithms. Discret. Appl. Math. 165 (2014) 69–82. [CrossRef] [Google Scholar]
- S. Bermudo, H. Fernau and J.M. Sigarreta, The differential and the Roman domination number of a graph. Appl. Anal. Discret. Math. 8 (2014) 155–171. [CrossRef] [Google Scholar]
- S. Bermudo, L. De la Torre, A.M. Martín-Caraballo and J.M. Sigarreta, The differential of the strong product graphs. Int. J. Comput. Math. 92 (2015) 1124–1134. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bermudo, J.M. Rodríguez and J.M. Sigarreta, On the differential in graphs. Util. Math. 97 (2015) 257–270. [MathSciNet] [Google Scholar]
- S. Bermudo, J.C. Hernández-Gómez and J.M. Sigarreta, Total k-domination in strong product graphs. Discret. Appl. Math. 263 (2019) 51–58. [CrossRef] [Google Scholar]
- A.R. Bindusree, I.N, Cangul, V. Lokesha and A.S Cevik, Zagreb polynomials of three graph operators. Filomat 30 (2016) 1979–1986. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cabrera Martínez and J.A. Rodríguez-Velázquez, From the strong differential to Italian domination in graphs. Mediterr. J. Math. 18 (2021) 1–19. [CrossRef] [Google Scholar]
- A. Cabrera Martínez and J.A. Rodríguez-Velázquez, On the perfect differential of a graph. Quaest. Math. 45 (2022) 327–345. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cabrera-Martínez, S. Cabrera García and J.A. Rodríguez-Velázquez, Double domination in lexicographic product graphs. Discret. Appl. Math. 284 (2020) 290–300. [CrossRef] [Google Scholar]
- A. Cabrera Martínez, A. Estrada-Moreno and J.A. Rodríguez-Velázquez, From the quasi-total strong differential to quasi-total Italian domination in graphs. Symmetry 13 (2021) 1036. [CrossRef] [Google Scholar]
- A. Cabrera Martínez, M.L. Puertas and J.A. Rodríguez, On the 2-packing differential of a graph. Results Math. 76 (2021) 1–24. [CrossRef] [Google Scholar]
- A. Cabrera-Martínez, I.R. Villamar, J.M. Rueda-Vázquez and J.M. Sigarreta Almira, Double total domination in the generalized lexicographic product of graphs. Quaest. Math. 47 (2023) 689–703. [Google Scholar]
- R.L. Caga-anan and S.R. Canoy Jr, On the I-differential of a graph. Appl. Math. Sci. 8 (2014) 4397–4404. [Google Scholar]
- W. Carballosa, J.M. Rodríguez, J.M. Sigarreta and M. Villeta, On the hyperbolicity constant of line graphs. Electron. J. Comb. 18 (2011) 210. [CrossRef] [Google Scholar]
- W. Carballosa, J.M. Rodríguez, J.M. Sigarreta and N. Vakhania, f-polynomial on some graph operations. Mathematics 7 (2019) 1074. [CrossRef] [Google Scholar]
- D.M. Cvetkocic, M. Doob and H. Sachs, Spectra of Graphs: Theory and Application. Vol. 10. Academic Press, New York (1980). [Google Scholar]
- M. Dettlaff, M. Lemańska, J.A. Rodríguez-Velázquez and R. Zuazua, On the super domination number of lexico-graphic product graphs. Discret. Appl. Math. 263 (2019) 118–129. [CrossRef] [Google Scholar]
- M.R. Farahani, W. Gao, M.F. Nadeem, S. Zafar and Z. Zahid, On the para-line graphs of certain nanostructures based on topological indices. Sci. Bull. Ser. B: Chem. Mater. Sci. 79 (2017) 93–104. [Google Scholar]
- M.R. Farahani, M.F. Nadeem, S. Zafar, Z. Zahid and X. Zhang, Study of the para-line graphs of certain polyphenyl chains using topological indices. Int. J. Biochem. Biotech. 8 (2017) 2435–2442. [Google Scholar]
- O. Favaron, S.M. Hedetniemi, S.T. Hedetniemi and D.F. Rall, On k-dependent domination. Discret. Math 249 (2002) 83–94. [CrossRef] [Google Scholar]
- W. Goddard and M.A. Henning, Generalised domination and independence in graphs. Congr. Numer. (1997) 161–172. [Google Scholar]
- F. Harary and R.Z. Norman, Some properties of line digraphs. Rend. Circ. Mat. Palermo 9 (1960) 161–168. [CrossRef] [MathSciNet] [Google Scholar]
- T.W. Haynes, Domination in Graphs: Volume 2: Advanced Topics. Routledge (2017). [Google Scholar]
- T.W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs. CRC Press (2013). [CrossRef] [Google Scholar]
- A. Kanli and Z.N.O. Berberler, Differential in infrastructure networks. RAIRO-Oper. Res. 55 (2021) 1249–1259. [Google Scholar]
- D. Kempe, J. Kleinberg and E. Tardos, Maximizing the spread of influence through a social network, in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2003) 137–146. [Google Scholar]
- D. Kempe, J. Kleinberg and E. Tardos, Influential nodes in a diffusion model for social networks, in International Colloquium on Automata, Languages, and Programming. Springer Berlin Heidelberg (2005) 1127–1138. [Google Scholar]
- J. Krausz, Démonstration nouvelle d’une thóreme de Whitney sur les réseaux. Mat. Fiz. Lapok 50 (1943) 75–85. [MathSciNet] [Google Scholar]
- J.L. Mashburn, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, Differentials in graphs. Util. Math. 69 (2006) 43–54. [MathSciNet] [Google Scholar]
- J.A. Méndez-Bermúdez, R. Reyes, J.M. Rodríguez and J.M. Sigarreta, Hyperbolicity on graph operators. Symmetry 10 (2018) 360. [CrossRef] [Google Scholar]
- J.A. Méndez-Bermúdez, R. Reyes, J.M. Rodríguez and J.M. Sigarreta, Recent results on hyperbolicity on unitary operators on graphs. Discret. Math. Lett. 11 (2023) 99–110. [CrossRef] [Google Scholar]
- A. Michalski and P. Bednarz, On independent secondary dominating sets in generalized graph products. Symmetry 13 (2021) 2399. [CrossRef] [Google Scholar]
- C. Natarajan and S.K. Ayyaswamy, A note on the hop domination number of a subdivision graph. Int. J. Appl. Math. 32 (2019) 381. [CrossRef] [Google Scholar]
- T. Perón, B. Messias F. Resende, F.A. Rodrigues, L.F. Costa and J.A. Méndez-Bermúdez, Spacing ratio characterization of the spectra of directed random networks. Phys. Rev. E 102 (2020) 062305. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- E. Prisner, Graph Dynamics. Vol. 338. CRC Press (1995). [Google Scholar]
- P.R.L. Pushpam and D. Yokesh, Differential in certain classes of graphs. Tamkang J. Math. 41 (2010) 129–138. [CrossRef] [MathSciNet] [Google Scholar]
- P.S. Ranjini and V. Lokesha, Smarandache–Zagreb index on three graph operators. Int. J. Math. Comb. 3 (2010) 1–10. [Google Scholar]
- P.S. Ranjini and V. Lokesha, SK indices of graph operator S(G) and R(G) on few nanostructures. Montes Taurus J. Pure Appl. Math. 2 (2020) 38–44. [Google Scholar]
- M.A. Rashid, S. Ahmad, M.K. Siddiqui and M. Imran, Topological properties of para-line graphs for chemical networks. Polycycl. Aromat. Compd. 42 (2022) 260–276. [CrossRef] [Google Scholar]
- V. Samodivkin, Domination related parameters in the generalized lexicographic product of graphs. Discret. Appl. Math. 300 (2021) 77–84. [CrossRef] [Google Scholar]
- J.M. Sigarreta, Differential in cartesian product graphs. ARS Comb. 126 (2016) 259–267. [Google Scholar]
- J.M. Sigarreta, Total domination on some graph operators. Mathematics 9 (2021) 241. [CrossRef] [Google Scholar]
- P.J. Slater, Enclaveless sets and MK-systems. J. Res. Nat. Bureau Stand. 82 (1977) 197–202. [CrossRef] [Google Scholar]
- W. Yan, B.Y. Yang and Y.N. Yeh, The behavior of Wiener indices and polynomials of graphs under five graph decorations. Appl. Math. Lett. 20 (2007) 290–295. [CrossRef] [MathSciNet] [Google Scholar]
- C.Q. Zhang, Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM J. Discret. Math. 3 (1990) 431–438. [CrossRef] [Google Scholar]
- X. Zhang, J. Liu and J. Meng, Domination in lexicographic product graphs. ARS Comb. 101 (2011) 251–256. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.