Open Access
Review
Issue
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
Page(s) 311 - 324
DOI https://doi.org/10.1051/ro/2024224
Published online 21 January 2025
  • A.B. Abubakar, P. Kumam, M. Malik, P. Chaipunya and A.H. Ibrahim, A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection. AIMS Math. 6 (2021) 6506–6527. [CrossRef] [MathSciNet] [Google Scholar]
  • A.B. Abubakar, M. Malik, P. Kumam, H. Mohammad, M. Sun, A.H. Ibrahim and A. Ibrahim Kiri, A Liu–Storeytype conjugate gradient method for unconstrained minimization problem with application in motion control. J. King Saud Univ. Sci. 34 (2022) 101923. [CrossRef] [Google Scholar]
  • Z. Aminifard and S. Babaie-Kafaki, Dai–Liao extensions of a descent hybrid nonlinear conjugate gradient method with application in signal processing. Numer. Algorithms 89 (2022) 1369–1387. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Andrei, An unconstrained optimization test functions. Adv. Model. Optim. 10 (2008) 147–161. [MathSciNet] [Google Scholar]
  • N. Andrei, A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes–Stiefel and Dai–Yuan. Stud. Inf. Control 17 (2008) 55–70. [Google Scholar]
  • N. Andrei, New hybrid conjugate gradient algorithms for unconstrained optimization. Encycl. Optim. (2009) 2560–2571. [Google Scholar]
  • N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained Optimization. Springer Cham (2020). [CrossRef] [Google Scholar]
  • N. Andrei, Modern Numerical Nonlinear Optimization. Springer Cham (2022). [CrossRef] [Google Scholar]
  • A.M. Awwal, I.M. Sulaiman, M. Malik, M. Mamat, P. Kumam and K. Sitthithakerngkiet, A spectral RMIL conjugate gradient method for unconstrained optimization with applications in portfolio selection and motion control. IEEE Access 9 (2021) 75398–75414. [CrossRef] [Google Scholar]
  • I. Bongartz, A.R. Conn, N. Gould and P.L. Toint, Constrained and unconstrained testing environment. ACM Trans. Math. Software (TOMS) 21 (1995) 123–160. [CrossRef] [Google Scholar]
  • G. Boente and R. Fraiman, Nonparametric regression estimation. J. Multivariate Anal. 29 (1989) 180–198. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT. Physica-Verlag HD (2010) 177–186. [Google Scholar]
  • Y. Chaib and A.E. Mehamdia, Global convergence of hybrid conjugate gradient method and its application to nonparametric estimation. Math. Found. Comput. (2024). DOI: 10.3934/mfc.2024011. [Google Scholar]
  • G. Collomb, W. Hardle and S. Hassani, A note on prediction via estimation of the conditional mode function. J. Stat. Plann. Inference 15 (1987) 227–236. [Google Scholar]
  • Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. [CrossRef] [MathSciNet] [Google Scholar]
  • R.B. Darlington and A.F. Hayes, Regression Analysis and Linear Models: Concepts, Applications, and Implementation. The Guilford Press, New York (2017). [Google Scholar]
  • E.D. Dolan and J.J. Morè, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [CrossRef] [MathSciNet] [Google Scholar]
  • X.W. Du, P. Zhang and W. Ma, Some modified conjugate gradient methods for unconstrained optimization. J. Comput. Appl. Math. 305 (2016) 92–114. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Fletcher, Practical Methods of Optimization, 2nd edition. Wiley, New York (1987). [Google Scholar]
  • R. Fletcher and C. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1964) 149–154. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Guefassa, Y. Chaib and T. Bechouat, A hybrid conjugate gradient method between MLS and FR in nonparametric statistics. Commun. Comb. Optim. 10 (2025) 405–421. [Google Scholar]
  • S.B. Hanachi, B. Sellami and M. Belloufi, A new family of hybrid conjugate gradient method for unconstrained optimization and its application to regression analysis. RAIRO-Oper. Res. 58 (2024) 613–627. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M.R. Hestenes and E.L. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49 (1952) 409–436. [CrossRef] [Google Scholar]
  • H. Huang, Z. Wei and S. Yao, The proof of the sufficient descent condition of the Wei–Yao–Liu conjugate gradient method under the strong Wolfe–Powell line search. Appl. Math. Comput. 189 (2007) 1241–1245. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Jian, L. Han and X. Jiang, A hybrid conjugate gradient method with descent property for unconstrained optimization. Appl. Math. Model. 39 (2015) 1281–1290. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Kaelo, P. Mtagulwa and M.V. Thuto, A globally convergent hybrid conjugate gradient method with strong Wolfe conditions for unconstrained optimization. Math. Sci. 14 (2020) 1–9. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Kumam, A.B. Abubakar, M. Malik, M. Sun, A.H. Ibrahim, N. Pakkaranang and B. Panyanak, A hybrid HS-LS conjugate gradient algorithm for unconstrained optimization with applications in motion control and image recovery. J. Comput. Appl. Math. 433 (2023) 115304. [CrossRef] [Google Scholar]
  • J.K. Liu and S.J. Li, New hybrid conjugate gradient method for unconstrained optimization. Appl. Math. Comput. 245 (2014) 36–43. [MathSciNet] [Google Scholar]
  • Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, part 1: theory. JOTA 69 (1991) 129–137. [CrossRef] [Google Scholar]
  • G. Ma, H. Lin, W. Jin and D. Han, Two modified conjugate gradient methods for unconstrained optimization with applications in image restoration problems. J. Appl. Math. Comput. 68 (2022) 4733–4758. [CrossRef] [MathSciNet] [Google Scholar]
  • A.E. Mehamdia, Y. Chaib and T. Bechouat, Two modified conjugate gradient methods for unconstrained optimization and applications. RAIRO-Oper. Res. 57 (2023) 333–350. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • E. Polak and G. Ribière, Note sur la convergence de directions conjuguée, Rev. Francaise Informat Recherche Operationelle 16 (1969) 35–43. [Google Scholar]
  • B.T. Polyak, The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9 (1969) 94–112. [CrossRef] [Google Scholar]
  • Z. Wei, S. Yao and L. Liu, The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. 183 (2006) 1341–1350. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Yu, Y. Zhao and Z. Wei, A descent nonlinear conjugate gradient method for large-scale unconstrained optimization. Appl. Math. Comput. 187 (2007) 636–643. [MathSciNet] [Google Scholar]
  • L. Zhang, An improved Wei–Yao–Liu nonlinear conjugate gradient method for optimization computation. Appl. Math. Comput. 6 (2009) 2269–2274. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Zoutendijk, Nonlinear programming, computational methods. Integer Nonlinear Program. (1970) 37–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.