Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
Page(s) 1 - 31
DOI https://doi.org/10.1051/ro/2024217
Published online 06 January 2025
  • S. Agarwal, R. Kant and R. Shankar, Humanitarian supply chain management frameworks: a critical literature review and framework for future development. Benchmarking 26 (2019) 1749–1780. [CrossRef] [Google Scholar]
  • UNDRR, The human cost of disasters: an overview of the last 20 years (2000–2019). [Online] Available: https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019 (2020). [Google Scholar]
  • L.N. Van Wassenhove, Blackett memorial lecture humanitarian aid logistics: supply chain management in high gear. J.Oper. Res. Soc. 57 (2006) 475–489. [CrossRef] [Google Scholar]
  • N. Altay and W.G. Green, OR/MS research in disaster operations management. Eur. J. Oper. Res. 175 (2006) 475–493. [CrossRef] [Google Scholar]
  • B.M. Beamon and B. Balcik, Performance measurement in humanitarian relief chains. Int. J. Public Sect. Manag. 21 (2008) 4–25. [CrossRef] [Google Scholar]
  • H. Dangi, A.K. Bardhan and A.S. Narag, Humanitarian relief logistics: an exploratory study for need and importance of performance measurement system. Int. J. Logist. Syst. Manag. 13 (2012) 1–16. [Google Scholar]
  • L. Gustavsson, Humanitarian logistics: context and challenges. Forced Migr. Rev. 18 (2003) 6–8. [Google Scholar]
  • A.S. Thomas and L.R. Kopczak, From logistics to supply chain management: the path forward in the humanitarian sector. Fritz Inst. 15 (2005) 1–15. [Google Scholar]
  • P.K. Dewa, I.N. Pujawan and I. Vanany, Human errors in warehouse operations: an improvement model. Int. J. Logist. Syst. Manag. 27 (2017) 298–317. [Google Scholar]
  • B. Balcik, B.M. Beamon, C.C. Krejci, K.M. Muramatsu and M. Ramirez, Coordination in humanitarian relief chains: practices, challenges and opportunities. Int. J. Prod. Econ. 126 (2010) 22–34. [CrossRef] [Google Scholar]
  • V. Raja Sreedharan, V. Kek, M. Dhanya, S. Anjali and P. Arunprasad, Understanding the role of logistics in humanitarian operations: key findings and analysis from literatures. Int. J. Logist. Syst. Manag. 36 (2020) 463–494. [Google Scholar]
  • A. Behl and P. Dutta, Humanitarian supply chain management: a thematic literature review and future directions of research. Ann. Oper. Res. 283 (2019) 1001–1044. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Thomas and M. Mizushima, Logistics training: necessity or luxury? Forced Migr. Rev. 22 (2005) 60–61. [Google Scholar]
  • N. Altay, Issues in disaster relief logistics. Large-Scale Disasters Predict. Control. Mitig. 9780521872 (2008) 120–146. [CrossRef] [Google Scholar]
  • A.K. Chakravarty, Humanitarian relief chain: rapid response under uncertainty. Int. J. Prod. Econ. 151 (2014) 146–157. [CrossRef] [Google Scholar]
  • A. Gunasekaran, R. Dubey, S.F. Wamba, T. Papadopoulos, B.T. Hazen and E.W.T. Ngai, Bridging humanitarian operations management and organisational theory. Int. J. Prod. Res. 56 (2018) 6735–6740. [CrossRef] [Google Scholar]
  • E. Diaz, On the dynamic inventory routing problem in humanitarian logistics: a simulation-optimization approach using agent-based modeling. Ph.D. thesis, Universidad de La Sabana (2020). [Google Scholar]
  • C.S. Tang, Perspectives in supply chain risk management. Int. J. Prod. Econ. 103 (2006) 451–488. [Google Scholar]
  • D. Ortiz, Geographic Information Systems (GIS) in humanitarian assistance: a meta-analysis. Pathways 1 (2019) 4. [Google Scholar]
  • R. Kaiser, P.B. Spiegel, A.K. Henderson and M.L. Gerber, The application of geographic information systems and global positioning systems in humanitarian emergencies: lessons learned, programme implications and future research. Disasters 27 (2003) 127–140. [CrossRef] [PubMed] [Google Scholar]
  • G. Barbarosoˇglu and Y. Arda, A two-stage stochastic programming framework for transportation planning in disaster response. J. Oper. Res. Soc. 55 (2004) 43–53. [CrossRef] [Google Scholar]
  • B. Balcik and B.M. Beamon, Facility location in humanitarian relief. Int. J. Logist. Res. Appl. 11 (2008) 101–121. [CrossRef] [Google Scholar]
  • C.G. Rawls and M.A. Turnquist, Pre-positioning of emergency supplies for disaster response. Transp. Res. Part B Methodol. 44 (2010) 521–534. [CrossRef] [Google Scholar]
  • N. Görmez, M. Köksalan and F.S. Salman, Locating disaster response facilities in Istanbul. J. Oper. Res. Soc. 62 (2011) 1239–1252. [CrossRef] [Google Scholar]
  • A.C.Y. Li, L. Nozick, N. Xu and R. Davidson, Shelter location and transportation planning under hurricane conditions. Transp. Res. Part E Logist. Transp. Rev. 48 (2012) 715–729. [CrossRef] [Google Scholar]
  • S. Tofighi, S.A. Torabi and S.A. Mansouri, Humanitarian logistics network design under mixed uncertainty. Eur. J. Oper. Res. 250 (2016) 239–250. [CrossRef] [Google Scholar]
  • M. Tavana, A.R. Abtahi, D. Di Caprio, R. Hashemi and R. Yousefi-Zenouz, An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations. Socioecon. Plann. Sci. 64 (2018) 21–37. [CrossRef] [Google Scholar]
  • A. Boostani, F. Jolai and A. Bozorgi-Amiri, Designing a sustainable humanitarian relief logistics model in pre- and postdisaster management. Int. J. Sustain. Transp. 15 (2021) 604–620. [CrossRef] [Google Scholar]
  • Z. Ghaffari, M.M. Nasiri, A. Bozorgi-Amiri and A. Rahbari, Emergency supply chain scheduling problem with multiple resources in disaster relief operations. Transp. A Transp. Sci. 16 (2020) 930–956. [Google Scholar]
  • M.K. Oksuz and S.I. Satoglu, A two-stage stochastic model for location planning of temporary medical centers for disaster response. Int. J. Disaster Risk Reduct. 44 (2020) 101426. [CrossRef] [Google Scholar]
  • A.M. Nezhadroshan, A.M. Fathollahi-Fard and M. Hajiaghaei-Keshteli, A scenario-based possibilistic-stochastic programming approach to address resilient humanitarian logistics considering travel time and resilience levels of facilities. Int. J. Syst. Sci. Oper. Logist. 8 (2021) 321–347. [Google Scholar]
  • I. Ismail, A possibilistic mathematical programming model to control the flow of relief commodities in humanitarian supply chains. Comput. Ind. Eng. 157 (2021) 107305. [CrossRef] [Google Scholar]
  • D. Alem, H.F. Bonilla-Londono, A.P. Barbosa-Povoa, S. Relvas, D. Ferreira and A. Moreno, Building disaster preparedness and response capacity in humanitarian supply chains using the Social Vulnerability Index. Eur. J. Oper. Res. 292 (2021) 250–275. [CrossRef] [Google Scholar]
  • S.R. Abazari, A. Aghsami and M. Rabbani, Prepositioning and distributing relief items in humanitarian logistics with uncertain parameters. Socioecon. Plann. Sci. 74 (2021) 100933. [CrossRef] [Google Scholar]
  • M. Daneshvar, S.D. Jena and W. Rei, A two-stage stochastic post-disaster humanitarian supply chain network design problem. Comput. Ind. Eng. 183 (2023) 109459. [CrossRef] [Google Scholar]
  • S. Jafarzadeh-Ghoushchi, M. Asghari, A. Mardani, V. Simic and E.B. Tirkolaee, Designing an efficient humanitarian supply chain network during an emergency: a scenario-based multi-objective model. Socioecon. Plann. Sci. 90 (2023) 101716. [CrossRef] [Google Scholar]
  • Y. Yin, J. Wang, F. Chu and D. Wang, Distributionally robust multi-period humanitarian relief network design integrating facility location, supply inventory and allocation, and evacuation planning. Int. J. Prod. Res. 62 (2024) 45–70. [CrossRef] [Google Scholar]
  • H. Shakibaei, M.R. Farhadi-Ramin, M. Alipour-Vaezi, A. Aghsami and M. Rabbani, Designing a post-disaster humanitarian supply chain using machine learning and multi-criteria decision-making techniques. Kybernetes 53 (2024) 1682–1709. [CrossRef] [Google Scholar]
  • G. Kovács and K. Spens, Identifying challenges in humanitarian logistics. Int. J. Phys. Distrib. Logist. Manag. 39 (2009) 506–528. [CrossRef] [Google Scholar]
  • A.M. Caunhye, X. Nie and S. Pokharel, Optimization models in emergency logistics: a literature review. Soc.-Econ. Plann. Sci. 46 (2012) 4–13. [CrossRef] [Google Scholar]
  • G. Galindo and R. Batta, Review of recent developments in OR/MS research in disaster operations management. Eur. J. Oper. Res. 230 (2013) 201–211. [CrossRef] [Google Scholar]
  • A. Leiras, I. de Brito, E. Queiroz Peres, T. Rejane Bertazzo and H. Tsugunobu Yoshida Yoshizaki, Literature review of humanitarian logistics research: trends and challenges. J. Humanit. Logist. Supply Chain Manag. 4 (2014) 95–130. [CrossRef] [Google Scholar]
  • P.D. Sentia, S. Abdul Shukor, A.N.A. Wahab and M. Mukhtar, Logistic distribution in humanitarian supply chain management: a thematic literature review and future research. Ann. Oper. Res. 323 (2023) 175–201. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Chong, J.G. Lazo Lazo, M.C. Pereda and J.M. Machuca De Pina, Goal programming optimization model under uncertainty and the critical areas characterization in humanitarian logistics management. J. Humanit. Logist. Supply Chain Manag. 9 (2019) 82–107. [CrossRef] [Google Scholar]
  • J. Monzón, F. Liberatore and B. Vitoriano, A mathematical pre-disaster model with uncertainty and multiple criteria for facility location and network fortification. Mathematics 8 (2020) 529. [CrossRef] [Google Scholar]
  • C. Cao, Y. Liu, O. Tang and X. Gao, A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains. Int. J. Prod. Econ. 235 (2021) 108081. [CrossRef] [Google Scholar]
  • K. Peters, S. Silva, R. Gonalves, M. Kavelj, H. Fleuren, D. den Hertog, O. Ergun and M. Freeman, The nutritious supply chain: optimizing humanitarian food assistance. INFORMS J. Optim. 3 (2021) 200–226. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Mousazadeh, S.A. Torabi, M.S. Pishvaee and F. Abolhassani, Accessible, stable, and equitable health service network redesign: a robust mixed possibilistic-flexible approach. Transp. Res. Part E Logist. Transp. Rev. 111 (2018) 113–129. [CrossRef] [Google Scholar]
  • G. Mavrotas, Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213 (2009) 455–465. [Google Scholar]
  • G. Mavrotas and K. Florios, An improved version of the augmented s-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219 (2013) 9652–9669. [MathSciNet] [Google Scholar]
  • JICA and CEST, The study on seismic microzoning of the greater Tehran area in the Islamic Republic of Iran. Japan International Cooperation Agency (JICA), Centre for Earthquake and Environmental Studies of Tehran (CEST), Tehran Municipality, Pacific Consultants Intern, Tehran. [Online] Available: http://libopac.jica.go.jp/images/report/P0000049357.html (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.