Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 1257 - 1271 | |
DOI | https://doi.org/10.1051/ro/2025038 | |
Published online | 06 May 2025 |
- N. Alon and M. Tarsi, Colorings and orientations of graphs. Combinatorica 12 (1992) 125–134. [CrossRef] [MathSciNet] [Google Scholar]
- E.-K. Cho, I. Chio, R. Kim, B. Park, T. Shan and X. Zhu, Decomposing planar graphs into graphs with degree restrictions. J. Graph Theory 101 (2022) 165–181. [CrossRef] [MathSciNet] [Google Scholar]
- W. Dong and B. Xu, On (3, 1)*-choosability of toroidal graphs. Discrete Math. Algorithms Appl. 1 (2009) 291–297. [CrossRef] [Google Scholar]
- W. Dong and B. Xu, A note on list improper coloring of plane graphs. Discrete Appl. Math. 157 (2009) 433–436. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs wihtout cycles of lengths 4 to 8. J. Combin. Theory, Ser. B 129 (2018) 38–54. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gonçalves, Covering planar graphs with forests, one having bounded maximum degree. J. Comb. Theory Ser. B 99 (2009) 314–322. [CrossRef] [Google Scholar]
- D. Guan and X. Zhu, Game chromatic number of outerplanar graphs. J. Graph Theory 30 (1999) 67–70. [CrossRef] [MathSciNet] [Google Scholar]
- T. Jensen and B. Toft, Graph Coloring Problems. Wiley, New York (1995). [Google Scholar]
- L. Li, H. Lu, T. Wang and X. Zhu, Decomposition of planar graphs with forbidden configurations. Discrete Appl. Math. 331 (2023) 147158. [Google Scholar]
- K.-W. Lih, Z. Song, W. Wang and K. Zhang, A note on list improper coloring planar graphs. Appl. Math. Lett. 14 (2001) 269–273. [CrossRef] [MathSciNet] [Google Scholar]
- H. Lu and F. Li, The decomposability of toroidal graphs without adjacent triangles or short cycles. Axioms 12 (2023) 173. [CrossRef] [Google Scholar]
- C.S.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36 (1961) 445–450. [CrossRef] [Google Scholar]
- L. Niu and X. Li, Decomposing graphs of nonnegative characteristic into subgraphs with degree restrictions. Discrete Math. 347 (2024) 113965. [CrossRef] [Google Scholar]
- U. Schauz, Proof of the list edge coloring conjecture for complete graphs of prime degree. Electron. J. Comb. 21 (2014) P3.43. [CrossRef] [Google Scholar]
- F. Tian, L. Niu and X. Li, Decompositions of graphs of nonnegative characteristic with some forbidden subgraphs. Appl. Math. Comput. 456 (2023) 128126. [CrossRef] [Google Scholar]
- W.T. Tutte, On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36 (1961) 221–230. [CrossRef] [Google Scholar]
- B. Xu and Q. Yu, A note on (3, 1)*-choosable toroidal graphs. Util. Math. 76 (2008) 183–189. [MathSciNet] [Google Scholar]
- H. Zhang, The result on (3, 1)*-choosability of graphs of nonnegative characteristic without 4-cycles and intersecting triangles. ARS Comb. 121 (2015) 353–360. [Google Scholar]
- H. Zhang, (3, 1)*-choosability of graphs of nonnegative characteristic without intersecting short cycles. Proc. Indian Acad. Sci. (Math. Sci.) 126 (2016) 159–165. [CrossRef] [MathSciNet] [Google Scholar]
- X. Zhu, The game coloring number of pseudo partial k-trres, Discrete Math. 215 (2000) 246–262. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.