Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 2, March-April 2025
Page(s) 939 - 958
DOI https://doi.org/10.1051/ro/2025022
Published online 31 March 2025
  • M. Abdullahi, A.B. Abubakar and S.B. Salihu, Global convergence via modified self-adaptive approach for solving constrained monotone nonlinear equations with application to signal recovery problems. RAIRO-Oper. Res. 57 (2023) 2561–2584. [Google Scholar]
  • M. Al-Baali, Y. Narushima and H. Yabe, A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization. Comput. Optim. App. 60 (2015) 89–110. [Google Scholar]
  • S. Aji, P. Kumam, A.M. Awwal, M.M. Yahaya and A.M. Bakoji, A new inertial-based method for solving pseudomonotone operator equations with application. Comput. Appl. Math. 42 (2023) 1. [Google Scholar]
  • A.M. Awwal, P. Kumam, K. Sitthithakerngkiet, A.M. Bakoji, A.S. Halilu and I.M. Sulaiman, Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application. AIMS Math. 6 (2021) 8792–8814. [MathSciNet] [Google Scholar]
  • A.C. Bovik, Handbook of Image and Video Processing. Academic Press (2010). [Google Scholar]
  • Z.B. Chen, H. Shao, P.J. Liu, G.X. Li and X.L. Rong, An efficient hybrid conjugate gradient method with an adaptive strategy and applications in image restoration problems. Appl. Numer. Math. 204 (2024) 362–379. [MathSciNet] [Google Scholar]
  • W.L. Cruz, A spectral algorithm for large-scale systems of nonlinear monotone equations. Numer. Algorithms 76 (2017) 1109–1130. [Google Scholar]
  • J.E. Dennis Jr. and J.J. Moré, Quasi-Newton methods, motivation and theory. SIAM Rev. 19 (1977) 46–89. [CrossRef] [MathSciNet] [Google Scholar]
  • E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. [Google Scholar]
  • F. Facchinei and J.S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York (2003). [Google Scholar]
  • M.A.T. Figueiredo, R.D. Nowak and S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces. 1 (2007) 586–597. [Google Scholar]
  • P.T. Gao and C.J. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints. Calcolo 55 (2018) 53. [Google Scholar]
  • P.T. Gao, C.J. He and Y. Liu, An adaptive family of projection methods for constrained monotone nonlinear equations with applications. Appl. Math. Comput. 359 (2019) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  • A.H. Ibrahim, P. Kumam, A.B. Abubakar and A. Adamu, Accelerated derivative-free method for nonlinear monotone equations with an application. Numer. Linear Algebra App. 29 (2022) e2424. [Google Scholar]
  • A.H. Ibrahim, P. Kumam, M. Sun, P. Chaipunya and A.B. Abubakar, Projection method with inertial step for nonlinear equations: application to signal recovery. J. Ind. Manage. Optim. 19 (2023) 30–55. [Google Scholar]
  • B. Ivanov, G.V. Milovanović and P.S. Stanimirović, Accelerated Dai–Liao projection method for solving systems of monotone nonlinear equations with application to image deblurring. J. Global Optim. 85 (2023) 377–420. [MathSciNet] [Google Scholar]
  • J.B. Jian, J.H. Yin, C.M. Tang and D.L. Han, A family of inertial derivative-free projection methods for constrained nonlinear pseudo-monotone equations with applications. Comput. Appl. Math. 41 (2022) 309. [Google Scholar]
  • J.K. Liu and Y.M. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algorithms 82 (2019) 245–262. [Google Scholar]
  • P.J. Liu, J.B. Jian and X.Z. Jiang, A new conjugate gradient projection method for convex constrained nonlinear equations. Complexity 2020 (2020) 8323865. [Google Scholar]
  • J.K. Liu, Y. Sun and Y.X. Zhao, A derivative-free projection algorithm for solving pseudo-monotone equations with convex constraints. Math. Numer. Sin. 43 (2021) 388. [Google Scholar]
  • J.K. Liu, Z.L. Lu, J.L. Xu, S. Wu and Z.W. Tu, An efficient projection-based algorithm without Lipschitz continuity for large-scale nonlinear pseudo-monotone equations. J. Comput. Appl. Math. 403 (2022) 113822. [CrossRef] [Google Scholar]
  • P.J. Liu, H. Shao, Y. Wang and X.Y. Wu, A three-term CGPM-based algorithm without Lipschitz continuity for constrained nonlinear monotone equations with applications. Appl. Numer. Math. 175 (2022) 98–107. [MathSciNet] [Google Scholar]
  • P.J. Liu, H. Shao, Z.H. Yuan, X.Y. Wu and T.L. Zheng, A family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial extensions for the constrained nonlinear pseudo-monotone equations with applications. Numer. Algorithms 94 (2023) 1055–1083. [Google Scholar]
  • P.J. Liu, X.Y. Wu, H. Shao, Y. Zhang and S.H. Cao, Three adaptive hybrid derivative-free projection methods for constrained monotone nonlinear equations and their applications. Numer. Linear Algebra App. 30 (2023) e2471. [Google Scholar]
  • P.J. Liu, L.H. Li, H. Shao, M.X. Liu and J.X. Fan, An inertial-type CG projection method with restart for pseudo-monotone costs with application to traffic assignment. Netw. Spatial Econ. (2024). DOI: 10.1007/s11067-024-09653-z. [Google Scholar]
  • P.J. Liu, H. Shao, Z.H. Yuan and J.H. Zhou, A family of inertial-based derivative-free projection methods with a correction step for constrained nonlinear equations and their applications. Numer. Linear Algebra App. 31 (2024) e2533. [Google Scholar]
  • G.D. Ma, J.C. Jin, J.B. Jian, J.H. Yin and D.L. Han, A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing. Numer. Algorithms 92 (2023) 1621–1653. [Google Scholar]
  • A. Mehamdia, Y. Chaib and T. Bechouat, Two modified conjugate gradient methods for solving unconstrained optimization and application. RAIRO-Oper. Res. 57 (2023) 333–350. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J.J. Moré, B.S. Garbow and K.E. Hillstrom, Testing unconstrained optimization software. ACM Trans. Math. Softw. (TOMS) 7 (1981) 17–41. [CrossRef] [Google Scholar]
  • Y. Narushima, H. Yabe and J.A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. SIAM J. Optim. 21 (2011) 212–230. [MathSciNet] [Google Scholar]
  • J.S. Pang, Inexact Newton methods for the nonlinear complementary problem. Math. Program. 36 (1986) 54–71. [CrossRef] [Google Scholar]
  • B.T. Polyak, Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4 (1964) 1–17. [CrossRef] [Google Scholar]
  • B.T. Polyak, The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9 (1969) 94–112. [CrossRef] [Google Scholar]
  • S.P. Rui and J. Zhang, An inexact algorithm for a class of CP with non-Lipschitzian function. J. Huaibei Normal Univ. (Nat. Sci.) 33 (2012) 16–18. [Google Scholar]
  • J. Sabi’u and A. Shah, An efficient three-term conjugate gradient-type algorithm for monotone nonlinear equations. RAIRO-Oper. Res. 55 (2021) S1113–S1127. [Google Scholar]
  • H. Shao, H. Guo, X.Y. Wu and P.J. Liu, Two families of self-adjusting spectral hybrid DL conjugate gradient methods and applications in image denoising. Appl. Math. Modell. 118 (2023) 393–411. [Google Scholar]
  • M.V. Solodov and B.F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Springer US, Boston, MA (1999) 355–369. [Google Scholar]
  • Y. Wang, Gauss-newton method. Wiley Interdiscipl. Rev. Comput. Stat. 4 (2012) 415–420. [Google Scholar]
  • Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13 (2004) 600–612. [CrossRef] [Google Scholar]
  • C.W. Wang, Y.J. Wang and C.L. Xu, A projection method for a system of nonlinear monotone equations with convex constraints. Math. Methods Oper. Res. 66 (2007) 33–46. [Google Scholar]
  • M.Y. Waziri, H.U. Muhammad, A.S. Halilu and K. Ahmed, A family of hybrid derivative-free methods via acceleration parameter for solving system of nonlinear equations. Filomat 37 (2023) 1461–1478. [Google Scholar]
  • X.Y. Wu, H. Shao, P.J. Liu, Y. Zhang and Y. Zhuo, An efficient conjugate gradient-based algorithm for unconstrained optimization and its projection extension to large-scale constrained nonlinear equations with applications in signal recovery and image denoising problems. J. Comput. Appl. Math. 422 (2023) 114879. [CrossRef] [Google Scholar]
  • X.Y. Wu, H. Shao, P.J. Liu and Y. Zhuo, An inertial spectral CG projection method based on the memoryless BFGS update. J. Optim. Theory App. 198 (2023) 1130–1155. [Google Scholar]
  • Y.H. Xiao, Q.Y. Wang and Q.J. Hu, Non-smooth equations based method for 1-norm problems with applications to compressed sensing. Nonlinear Anal. Theory Methods App. 74 (2011) 3570–3577. [CrossRef] [Google Scholar]
  • Y.H. Xiao, S.Y. Wu and L.Q. Qi, Nonmonotone Barzilai–Borwein gradient algorithm for 1-regularized nonsmooth minimization in compressive sensing. J. Sci. Comput. 61 (2014) 17–41. [Google Scholar]
  • J.H. Yin, J.B. Jian, X.Z. Jiang, M.X. Liu and L.Z. Wang, A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications. Numer. Algorithms 88 (2021) 389–418. [Google Scholar]
  • J.H. Yin, J.B. Jian and G.D. Ma, A modified inexact Levenberg–Marquardt method with the descent property for solving nonlinear equations. Comput. Optim. App. 87 (2024) 289–322. [Google Scholar]
  • G.H. Yu, S.Z. Niu and J.H. Ma, Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. J. Ind. Manage. Optim. 9 (2013) 117–129. [Google Scholar]
  • G.L. Yuan, Z.H. Meng and Y. Li, A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J. Optim. Theory App. 168 (2016) 129–152. [Google Scholar]
  • G.L. Yuan, T.T. Li and W.J. Hu, A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems. Appl. Numer. Math. 147 (2020) 129–141. [CrossRef] [MathSciNet] [Google Scholar]
  • Y.T. Zheng, A new family of Dai–Liao conjugate gradient methods with modified secant equation for unconstrained optimization. RAIRO-Oper. Res. 55 (2021) 3281–3291. [Google Scholar]
  • W.J. Zhou and D.H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions. Math. Comput. 77 (2008) 2231–2240. [Google Scholar]
  • W.J. Zhou and D.M. Shen, Convergence properties of an iterative method for solving symmetric non-linear equations. J. Optim. Theory App. 164 (2015) 277–289. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.