Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 2, March-April 2025
Page(s) 743 - 770
DOI https://doi.org/10.1051/ro/2025013
Published online 12 March 2025
  • L. Abolnikov and A. Dukhovny, Markov chains with transition delta-matrix: ergodicity conditions, invariant prob- ability measures and applications. Int. J. Stoch. Anal. 4 (1991) 333–355. [Google Scholar]
  • R. Arumuganathan and S. Jeyakumar, Steady state analysis of a bulk queue with multiple vacations, setup times with N-policy and closedown times. Appl. Math. Modell. 29 (2005) 972–986. [CrossRef] [Google Scholar]
  • A. Banerjee, U.C. Gupta and V. Goswami, Analysis of finite-buffer discrete-time batch-service queue with batch- size-dependent service. Comput. Ind. Eng. 75 (2014) 121–128. [CrossRef] [Google Scholar]
  • A. Banerjee, U.C. Gupta and S.R. Chakravarthy, Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service. Comput. Oper. Res. 60 (2015) 138–149. [CrossRef] [MathSciNet] [Google Scholar]
  • W.J. Gray, P.P. Wang and M. Scott, A queueing model with multiple types of server breakdowns. Q. Technol. Quant. Manage. 1 (2004) 245–255. [CrossRef] [Google Scholar]
  • U.C. Gupta and S. Pradhan, Queue length and server content distribution in an infinite-buffer batch-service queue with batch-size-dependent service. Adv. Oper. Res. 2015 (2015) 102824. [Google Scholar]
  • U.C. Gupta, N. Kumar, S. Pradhan, F.P. Barbhuiya and M.L. Chaudhry, Complete analysis of a discrete-time batch service queue with batch-size-dependent service time under correlated arrival process: D-MAP/G(a,b)n/1. RAIRO-Oper. Res. 55 (2021) 1231–1256. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Jeyakumar and B. Senthilnathan, A study on the behaviour of the server breakdown without interruption in a MX/G(a,b)/1 queueing system with multiple vacations and closedown time. Appl. Math. Comput. 219 (2012) 2618–2633. [MathSciNet] [Google Scholar]
  • S. Jeyakumar and B. Senthilnathan, Modelling and analysis of a bulk service queueing model with multiple working vacations and server breakdown. RAIRO-Oper. Res. 51 (2017) 485–508. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • P. Kalita and G. Choudhury, A single server queue under random vacation policy. RAIRO-Oper. Res. 55 (2021) S225–S251. [Google Scholar]
  • J.C. Ke, The optimal control of an M/G/1 queueing system with server vacations, startup and breakdowns. Comput. Ind. Eng. 44 (2003) 567–579. [CrossRef] [Google Scholar]
  • J.C. Ke, T.H. Liu, S. Su and Z.G. Zhang, On retrial queue with customer balking and feedback subject to server breakdowns. Commun. Stat.-Theory Methods 51 (2022) 6049–6063. [CrossRef] [Google Scholar]
  • P.V. Laxmi and K. Jyothsna, Finite buffer GI/Geo/1 batch servicing queue with multiple working vacations. RAIRO-Oper. Res. 48 (2014) 521–543. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • N. Nandy and S. Pradhan, Stationary joint distribution of a discrete-time group-arrival and batch-size-dependent service queue with single and multiple vacation. Commun. Stat.-Theory Methods 52 (2023) 3012–3046. [CrossRef] [Google Scholar]
  • S. Pradhan, A discrete-time batch transmission channel with random serving capacity under batch-size-dependent service. Int. J. Comput. Math. Comput. Syst. Theory 5 (2020) 175–197. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Pradhan and P. Karan, Performance analysis of an infinite-buffer batch-size-dependent bulk service queue with server breakdown and multiple vacation. J. Ind. Manage. Optim. 19 (2023) 4615–4640. [CrossRef] [Google Scholar]
  • R. Rajasudha, R. Arumuganathan and S. Dharmaraja, Performance analysis of discrete-time GeoX/G/1 retrial queue with various vacation policies and impatient customers. RAIRO-Oper. Res. 56 (2022) 1089–1117. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S.K. Samanta and Z.G. Zhang, Stationary analysis of a discrete-time GI/D-MSP/1 queue with multiple vacations. Appl. Math. Modell. 36 (2012) 5964–5975. [CrossRef] [Google Scholar]
  • S.K. Samanta, U.C. Gupta and R.K. Sharma, Analyzing discrete-time D-BMAP/G/1/N queue with single and multiple vacations. Eur. J. Oper. Res. 182 (2007) 321–339. [CrossRef] [Google Scholar]
  • K. Sikdar, Analysis of finite/infinite buffer bulk service queue with Poisson/Markovian arrival process and server vacations. Ph.D. thesis, IIT, Kharagpur (2003). [Google Scholar]
  • K. Sikdar, Analysis of the MAP/G(a,b)/1/N queue with multiple vacations. Appl. Math. Modell. 32 (2008) 1308–1317. [CrossRef] [Google Scholar]
  • K. Sikdar, A single server finite buffer Geom/G/1/K queue with L limited service and multiple vacation policy. Int. J. Math. Oper. Res. 27 (2024) 328–353. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Sikdar and U.C. Gupta, On the batch arrival batch service queue with finite buffer under server’s vacation: MX/GY /1/N queue. Comput. Math. App. 56 (2008) 2861–2873. [Google Scholar]
  • J. Wang, L. Zhao and F. Zhang, Analysis of the finite source retrial queues with server breakdowns and repairs. J. Ind. Manage. Optim. 7 (2011) 655–676. [CrossRef] [Google Scholar]
  • D.Y. Yang and C.H. Wu, Cost-minimization analysis of a working vacation queue with N-policy and server break- downs. Comput. Ind. Eng. 82 (2015) 151–158. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.