Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 3, May-June 2025
Page(s) 1273 - 1293
DOI https://doi.org/10.1051/ro/2025032
Published online 07 May 2025
  • A.J. Benavides and M. Ritt, Fast heuristics for minimizing the makespan in non-permutation flow shops. Comput. OR 100 (2018) 230–243. [Google Scholar]
  • A. Brum, R. Ruiz and M. Ritt, Automatic generation of iterated greedy algorithms for the non-permutation flow shop scheduling problem with total completion time minimization. Comput. Ind. Eng. 163 (2022) 107843. [Google Scholar]
  • P.-C. Chang, W.-H. Huang, J.-L. Wu and T.C.E. Cheng, A block mining and re-combination enhanced genetic algorithm for the permutation flowshop scheduling problem. Int. J. Prod. Econ. 141 (2013) 45–55. [Google Scholar]
  • J. Cheng, H. Kise and H. Matsumoto, A branch-and-bound algorithm with fuzzy inference for a permutation flowshop scheduling problem. Eur. J. Oper. Res. 96 (1997) 578–590. [CrossRef] [Google Scholar]
  • B. Ek¸sioğlu, S.D. Ek¸sioğlu and P. Jain, A tabu search algorithm for the flowshop scheduling problem with changing neighborhoods. Comput. Ind. Eng. 54 (2008) 1–11. [Google Scholar]
  • S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop. Ellis Horwood Ltd., Chichester, UK (1982) 80, 81. [Google Scholar]
  • M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117–129. [CrossRef] [MathSciNet] [Google Scholar]
  • C.A. Glass, J.N.D. Gupta and C.N. Potts, Two-machine no-wait flow shop scheduling with missing operations. Math. Oper. Res. 24 (1999) 911–924. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Henneberg and J.S. Neufeld, A constructive algorithm and a simulated annealing approach for solving flowshop problems with missing operations. Int. J. Prod. Res. 54 (2016) 3534–3550. [CrossRef] [Google Scholar]
  • E. Ignall and L. Schrage, Application of the branch and bound technique to some flow-shop scheduling problems. Oper. Res. 13 (1965) 400–412. [CrossRef] [Google Scholar]
  • S.M. Johnson, Optimal two-and three-stage production schedules with setup times included. Nav. Res. Logistics Quart. 1 (1954) 61–68. [CrossRef] [Google Scholar]
  • T. Ladhari and M. Haouari, A computational study of the permutation flow shop problem based on a tight lower bound. Comput. OR 32 (2005) 1831–1847. [Google Scholar]
  • R. Leisten and M. Kolbe, A note on scheduling jobs with missing operations in permutation flow shops. Int. J. Prod. Res. 36 (1998) 2627–2630. [CrossRef] [Google Scholar]
  • C.-J. Liao, L. Liao and C. Tseng, A performance evaluation of permutation vs. non-permutation schedules in a flowshop. Int. J. Prod. Res. 44 (2006) 4297–4309. [CrossRef] [Google Scholar]
  • M. Nawaz, E.E. Enscore Jr and I. Ham, A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11 (1983) 91–95. [CrossRef] [Google Scholar]
  • R. Ouchene, D. Rebaine and P. Baptiste, Ambiguity of the definition of permutation flow shops in the presence of missing operations. Comput. Ind. Eng. 182 (2023) 109387. [Google Scholar]
  • M. Pinedo, Scheduling: Theory, Algorithms and Systems. Springer, New York (2002) 15. [Google Scholar]
  • C.N. Potts, D.B. Shmoys and D.P. Williamson, Permutation vs. non-permutation flow shop schedules. Oper. Res. Lett. 10 (1991) 281–284. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Pugazhendhi, S. Thiagarajan, C. Rajendran and N. Anantharaman, Performance enhancement by using non-permutation schedules in flowline-based manufacturing systems. Comput. Ind. Eng. 44 (2003) 133–157. [Google Scholar]
  • R. Ramezanian, M.S. Mehrabad and D. Rahmani, Flow shop scheduling problem with missing operations: genetic algorithm and tabu search. Int. J. Appl. Oper. Res. 1 (2011) 21–30. [Google Scholar]
  • M. Ritt and D.A. Rossit, Effective heuristics for permutation and non-permutation flow shop scheduling with missing operations. Comput. Oper. Res. 170 (2024) 106742. [Google Scholar]
  • D.A. Rossit, F. Tohmé and M. Frutos, The non-permutation flow-shop scheduling problem: a literature review. Omega 77 (2018) 143–153. [CrossRef] [Google Scholar]
  • S.J. Sadjadi, M.B. Aryanezhaad and M. Ziaee, The general flowshop scheduling problem: mathematical models. J. Appl. Sci. 8 (2008) 3032–3037. [CrossRef] [Google Scholar]
  • S. Sahni and Y. Cho, Complexity of scheduling shops with no wait in process. Math. Oper. Res. 4 (1979) 448–457. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Sridhar and C. Rajendran, Scheduling in a cellular manufacturing system: a simulated annealing approach. Int. J. Prod. Res. 31 (1993) 2927–2945. [CrossRef] [Google Scholar]
  • D. Vasiljevic and M. Danilovic, Handling ties in heuristics for the permutation flow shop scheduling problem. J. Manuf. Syst. 35 (2015) 1–9. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.