Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1325 - 1340 | |
DOI | https://doi.org/10.1051/ro/2025046 | |
Published online | 14 May 2025 |
- E. Ackelsberg, Z. Brehm, A. Chan, J. Mundinger and C. Tamon, Laplaican state transfer in coronas. Linear Algebra Appl. 506 (2016) 154–167. [CrossRef] [MathSciNet] [Google Scholar]
- E. Ackelsberg, Z. Brehm, A. Chan, J. Mundinger and C. Tamon, Quantum state transfer in coronas. Electron. J. Comb. 24 (2017) #P2.24. [CrossRef] [Google Scholar]
- R. Alvir, S. Dever, B. Lovitz, J. Myer, C. Tamon, Y. Xu and H. Zhan, Perfect state transfer in Laplacian quantum walk. J. Algebraic Comb. 43 (2016) 801–826. [CrossRef] [Google Scholar]
- R.J. Angeles-Canul, R.M. Norton, M.C. Opperman, C.C. Paribello, M.C. Russell and C. Tamon, Perfect state transfer, integral circulants, and join of graphs. Quantum Inf. Comput. 10 (2010) 325–342. [MathSciNet] [Google Scholar]
- A. Bernasconi, C. Godsil and S. Severini, Quantum networks on cubelike graphs. Phys. Rev. A 78 (2008) 052320. [CrossRef] [MathSciNet] [Google Scholar]
- B. Bhattacharjya, H. Monterde and H. Pal, Quantum walks on blow-up graphs. J. Phys. A: Math. Theor. 57 (2024) 335303. [CrossRef] [Google Scholar]
- S. Bose, Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91 (2003) 207901. [CrossRef] [PubMed] [Google Scholar]
- X. Cao and K. Feng, Perfect state transfer on Cayley graphs over dihedral groups. Linear Multilinear Algebra 69 (2021) 343–360. [CrossRef] [MathSciNet] [Google Scholar]
- M. Christandl, N. Datta, A. Ekert and A. Landahl, Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92 (2004) 187902. [CrossRef] [PubMed] [Google Scholar]
- G. Coutinho, Quantum state transfer in graphs. Ph.D. thesis, University of Waterloo (2014). [Google Scholar]
- D. Cvetković, Spectra of graphs formed by some unary operations. Publ. Inst. Math. (Beograd) (N.S.) 19 (1975) 37–41. [MathSciNet] [Google Scholar]
- D. Cvetković, P. Rowlinson and S.K. Simić, An Introduction to the Thoery of Graph Spectra, 1st edition. Cambridge University Press (2010). [Google Scholar]
- E. Farhi and S. Gutmann, Quantum computation and decision trees. Phys. Rev. A 58 (1998) 915–928. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Ge, B. Greenberg, O. Perez and C. Tamon, Perfect state transfer, graph products and equitable partitions. Int. J. Quantum Inf. 9 (2011) 823–842. [CrossRef] [Google Scholar]
- C. Godsil, State transfer on graphs. Discrete Math. 312 (2012) 129–147. [CrossRef] [MathSciNet] [Google Scholar]
- C. Godsil, When can perfect state transfer occur? Electron. J. Linear Algebra 23 (2012) 877–890. [CrossRef] [MathSciNet] [Google Scholar]
- C. Godsil, Periodic graphs. Electron. J. Comb. 18 (2011) #P23. [CrossRef] [Google Scholar]
- G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edition. Oxford University Press (2000). [Google Scholar]
- Y. Li, X. Liu and S. Zhang, Laplacian state transfer in 𝒬-graph. Appl. Math. Comput. 384 (2020) 125370. [MathSciNet] [Google Scholar]
- D. Liu and X. Liu, No Laplacian perfect state transfer in total graphs. Discrete Math. 346 (2023) 113529. [CrossRef] [Google Scholar]
- X. Liu and Q. Wang, Laplacian state transfer in total graphs. Discrete Math. 344 (2021) 112139. [CrossRef] [Google Scholar]
- H. Pal, Laplacian state transfer on graphs with an edge perturbation between twin vertices. Discrete Math. 345 (2022) 112872. [CrossRef] [Google Scholar]
- H. Pal and B. Bhattacharjya, Perfect state transfer on gcd-graphs. Linear Multilinear Algebra 65 (2017) 2245–2256. [CrossRef] [MathSciNet] [Google Scholar]
- I. Richards, An application of Galois theory to elementary arithmetic. Adv. Math. 13 (1974) 268–273. [CrossRef] [Google Scholar]
- I. Thongsomnuk and Y. Meemark, Perfect state transfer in unitary Cayley graphs and gcd-graphs. Linear Multilinear Algebra 67 (2019) 39–50. [CrossRef] [MathSciNet] [Google Scholar]
- G.-X. Tian, P.-K. Yu and S.-Y. Cui, The signless Laplacian state transfer in coronas. Linear Multilinear Algebra 69 (2021) 278–295. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang and X. Liu, Laplacian state transfer in edge complemented coronas. Discrete Appl. Math. 293 (2021) 1–14. [CrossRef] [MathSciNet] [Google Scholar]
- W. Wang, X. Liu and J. Wang, Laplacian pair state transfer in vertex coronas. Linear Multilinear Algebra 71 (2023) 2282–2297. [CrossRef] [MathSciNet] [Google Scholar]
- X.-Q. Zhang, S.-Y. Cui and G.-X. Tian, Signless Laplacian state transfer on 𝒬-graphs. Appl. Math. Comput. 425 (2022) 127070. [Google Scholar]
- X.-Q. Zhang, Q. Xiong, G.-X. Tian and S.-Y. Cui, Quantum state transfer on neighborhood corona of two graphs. Bull. Malays. Math. Sci. Soc. 46 (2023) 11. [CrossRef] [Google Scholar]
- J. Zhou and C. Bu, State transfer and star complements in graphs. Discrete Appl. Math. 176 (2014) 130–134. [CrossRef] [MathSciNet] [Google Scholar]
- J. Zhou, C. Bu and J. Shen, Some results for the periodicity and perfect state transfer. Electron. J. Comb. 18 (2011) #P184. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.