Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 3, May-June 2025
Page(s) 1443 - 1473
DOI https://doi.org/10.1051/ro/2025042
Published online 04 June 2025
  • A. Aghsami, Y. Samimi and A. Aghaei, A novel Markovian queueing-inventory model with imperfect production and inspection processes: a hospital case study. Comput. Ind. Eng. 162 (2021) 107772. [CrossRef] [Google Scholar]
  • A. Aghsami, Y. Samimi and A. Aghaei, An integrated Markovian queueing-inventory model in a single retailer-single supplier problem with imperfect quality and destructive testing acceptance sampling. Adv. Ind. Eng. 55 (2021) 367–401. [Google Scholar]
  • M. Amirthakodi and B. Sivakumar, An inventory system with service facility and finite orbit size for feedback customers. OPSEARCH 52 (2015) 225–255. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Amirthakodi and B. Sivakumar, An inventory system with service facility and feedback customers. Int. J. Ind. Syst. Eng. 33 (2019) 374–411. [Google Scholar]
  • M. Amirthakodi, V. Radhamami and B. Sivakumar, A perishable inventory system with service facility and feedback customers. Ann. Oper. Res. 233 (2015) 25–55. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Ayyappan and S. Karpagam, Analysis of a bulk queue with unreliable server, immediate feedback, N-policy, Bernoulli schedule multiple vacation and stand-by server. Ain Shams Eng. J. 10 (2019) 873–880. [CrossRef] [Google Scholar]
  • G. Ayyappan and K. Thilagavathy, Analysis of MAP/PH/1 queueing model with immediate feedback, starting failures, single vacation, standby server, delayed repair, breakdown and impatient customers. Int. J. Math. Oper. Res. 19 (2021) 269–301. [CrossRef] [MathSciNet] [Google Scholar]
  • J.W. Baek, On the control policy of a queuing? Inventory system with variable inventory replenishment speed. Mathematics 12 (2024) 194. [CrossRef] [Google Scholar]
  • A.A. Bouchentouf, C. Mouloud and M. Boualem, Performance and economic analysis of a single server feedback queueing model with vacation and impatient customers. Opsearch 56 (2019) 300–323. [CrossRef] [MathSciNet] [Google Scholar]
  • S.R Chakravarthy, An inventory system with Markovian demands, phase type distributions for perishability and replenishment. Opsearch 47 (2010) 266–283. [CrossRef] [MathSciNet] [Google Scholar]
  • S.R. Chakravarthy and B.M. Rao, Queuing-inventory models with random replenishment opportunities. Mathematics 9 (2021) 1092. [CrossRef] [Google Scholar]
  • S.R. Chakravarthy and A. Rumyantsev, Analytical and simulation studies of queueing-inventory models with MAP demands in batches and positive phase type services. Simul. Model. Pract. Theory 103 (2020) 102092. [CrossRef] [Google Scholar]
  • K.H. Choi, B.K. Yoon and S.A. Moon, Queueing inventory systems with phase-type service distributions: a literature review. Ind. Eng. Manage. Syst. 18 (2019) 330–339. [Google Scholar]
  • H. Daduna, On queueing-inventory-location problems. Ann. Oper. Res. 331 (2023) 679–710. [CrossRef] [MathSciNet] [Google Scholar]
  • M.P. de Brito and E.A. van der Laan, Inventory control with product returns: the impact of imperfect information. Eur. J. Oper. Res. 194 (2009) 85–101. [CrossRef] [Google Scholar]
  • S. Dissa and P.V. Ushakumari, Two commodity queueing inventory system with random common lifetime, two demand classes and pool of customers. Heliyon 9 (2023) e21478. [CrossRef] [PubMed] [Google Scholar]
  • S. Dissa and P.V. Ushakumari, Two commodity perishable queueing inventory system with random common lifetime of commodities and positive lead time. Opsearch 61 (2024) 809–834. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Hanukov, A queueing-inventory system with a repeated-orbit policy during the service. Ann. Oper. Res. (2023). DOI: 10.1007/s10479-023-05648-0. [Google Scholar]
  • K. Jeganathan, S. Selvakumar, S. Saravanan, N. Anbazhagan, S. Amutha, W. Cho, G.P. Joshi and J. Ryoo, Performance of stochastic inventory system with a fresh item, returned item, refurbished item, and multi-class customers. Mathematics 10 (2022) 1137. [CrossRef] [Google Scholar]
  • K.P. Jose and S.S. Nair, Analysis of two production inventory systems with buffer, retrials and different production rates. J. Ind. Eng. Int. 13 (2017) 369–380. [CrossRef] [Google Scholar]
  • V.S. Koroliuk, L.A. Ponomarenko, A.Z. Melikov and A.M. Rustamov, Methods for analysis of multi-channel queueing models with instantaneous and delayed feedbacks. Cyber. Syst. Anal. 52 (2016) 58–70. [CrossRef] [Google Scholar]
  • A. Krishnamoorthy and K.P. Jose, Comparison of Inventory systems with service, positive lead-time, loss, and retrial of customers. J. Appl. Math. Stoch. Anal. 2007 (2007) 37848. [CrossRef] [Google Scholar]
  • A. Krishnamoorthy, B. Lakshmy and R. Manikandan, A survey on inventory models with positive service time. Opsearch 48 (2011) 153–169. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Krishnamoorthy, D. Shajin and B. Lakshmy, On a queueing-inventory with reservation, cancellation, common life time and retrial. Ann. Oper. Res. 247 (2016) 365–389. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Krishnamoorthy, D. Shajin and B. Lakshmy, GI/M/1 type queueing-inventory systems with postponed work, reservation, cancellation and common life time. Indian J. Pure Appl. Math. 47 (2016) 357–388. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Krishnamoorthy, B. Benny and D. Shajin, A revisit to queueing-inventory system with reservation, cancellation and common life time. Opsearch 54 (2017) 336–350. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Krishnamoorthy, D. Shajin and V.C. Narayanan, Inventory with positive service time: a survey, in Advanced Trends in Queueing Theory. Series of Books Mathematics and Statistics? Sciences, edited by V. Anisimov, N. Limnios. Vol. 2. ISTE & Wiley, London, UK (2021) 201–238. [Google Scholar]
  • Z. Lian and M.F. Neuts, A discrete-time model for common lifetime inventory systems. Math. Oper. Res. 30 (2005) 718–732. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Manikandan and S.S. Nair, M/M/11 queueing-inventory system with retrial of unsatisfied customers. Commun. Appl. Anal. 21 (2017) 217–236. [Google Scholar]
  • A. Melikov and A. Molchanov, Stock optimization in transport/storage systems. Cybernetics 28 (1992) 484–487. [Google Scholar]
  • A. Melikov, A. Krishnamoorthy and M. Shahmaliyev, Numerical analysis and long run total cost optimization of perishable queuing inventory systems with delayed feedback. Queuing Models Serv. Manage. 2 (2019) 83–111. [Google Scholar]
  • M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. John Hopkins University Press, Baltimore, MD, USA (1981). [Google Scholar]
  • S. Otten and H. Daduna, Stability of queueing-inventory systems with customers of different priorities. Ann. Oper. Res. 331 (2023) 963–983. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Rasmi, M.J. Jacob, A. Dudin and A. Krishnamoorthy, Queueing inventory system with multiple service nodes and addressed retrials from a common orbit. Methodol. Comput. Appl. Probab. 26 (2024) 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Saranya, S.A. Lawrence and B. Sivakumar, An inventory system with replacement and refurbishment of failed items. Commun. Stat. Theory Methods 52 (2023) 5966–5988. [CrossRef] [Google Scholar]
  • M. Schwarz and H. Daduna, Queuing systems with inventory management with random lead times and with back-ordering. Math. Methods Oper. Res. 64 (2006) 383–414. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Schwarz, C. Sauer, H. Daduna, R. Kulik and R. Szekli, M/M/1 queuing systems with inventory. Queuing Syst. Theory Appl. 54 (2006) 55–78. [CrossRef] [Google Scholar]
  • D. Shajin and A. Krishnamoorthy, Stochastic decomposition in retrial queueing-inventory system. RAIRO-Oper. Res. 54 (2020) 81–99. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • D. Shajin and A. Krishnamoorthy, On a queueing-inventory system with impatient customers, advanced reservation, cancellation, overbooking and common life time. Oper. Res. Int. J. 21 (2021) 1229–1253. [CrossRef] [Google Scholar]
  • D. Shajin, B. Benny, T.G. Deepak and A. Krishnamoorthy, A relook at queueing-inventory system with reservation, cancellation and common life time. Commun. Appl. Anal. 20 (2016) 545–574. [Google Scholar]
  • D. Shajin, A. Krishnamoorthy, A.N. Dudin, V.C. Joshua and J. Varghese, On a queueing-inventory system with advanced reservation and cancellation for the next K time frames ahead: the case of overbooking. Queueing Syst. 94 (2020) 3–37. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Shajin, A. Krishnamoorthy and R. Manikandan, On a queueing-inventory system with common life time and Markovian lead time process. Oper. Res. Int. J. 22 (2022) 651–684. [CrossRef] [Google Scholar]
  • K. Sigman and D. Simchi-Levi, Light traffic heuristic for an M/G/1 queue with limited inventory. Ann. Oper. Res. 40 (1992) 371–380. [CrossRef] [Google Scholar]
  • C. Suganya, M. Amirthakodi and B. Sivakumar, An inventory system with two heterogeneous servers and orbital search for feedback customers. Int. J. Math. Modell. Numer. Optim. 8 (2018) 351–377. [Google Scholar]
  • L. Takacs, A single-server queue with feedback. Bell Syst. Tech. J. 42 (1963) 505–519. [CrossRef] [Google Scholar]
  • L. Takacs, A queueing model with feedback. Oper. Res. 11 (1977) 345–354. [Google Scholar]
  • V. Vinitha, N. Anbazhagan, S. Amutha, K. Jeganathan, G.P. Joshi, W. Cho and S. Seo, Steady state analysis of impulse customers and cancellation policy in queueing-inventory system. Processes 9 (2021) 2146. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.