Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 3, May-June 2025
Page(s) 1645 - 1664
DOI https://doi.org/10.1051/ro/2025060
Published online 20 June 2025
  • T.G. Robertazzi, Computer Networks and Systems: Queueing Theory and Performance Evaluation. Springer Science & Business Media (2000). [Google Scholar]
  • S. Goel and R. Kulshrestha, Dependability-based analysis for ultra-reliable communication in heterogeneous traffic cognitive radio networks with spectrum reservation. Wireless Pers. Commun. 127 (2022) 3015–3039. [CrossRef] [Google Scholar]
  • W. Miao, G. Min, Y. Wu, H. Wang and J. Hu, Performance modelling and analysis of software-defined networking under bursty multimedia traffic. ACM Trans. Multimedia Comput. Commun. App. (TOMM) 12 (2016) 1–19. [Google Scholar]
  • W. Chang, Preemptive priority queues. Oper. Res. 13 (1965) 820–827. [CrossRef] [Google Scholar]
  • S. Jin, S. Chen and J. Zhang, Social optimization and pricing policy in cognitive radio networks with an energy saving strategy. Mobile Inf. Syst. 2016 (2016) 1–10. [Google Scholar]
  • D. Wagner, Analysis of a multi-server model with non-preemptive priorities and non-renewal input. Teletraffic Sci. Eng. 1 (1994) 757–766. [CrossRef] [Google Scholar]
  • C.-K. Tham, Q. Yao and Y. Jiang, A multi-class probabilistic priority scheduling discipline for differentiated services networks. Comput. Commun. 25 (2002) 1487–1496. [CrossRef] [Google Scholar]
  • A. Sleptchenko, A.V. Harten and M.V.D. Heijden, An exact solution for the state probabilities of the multi-class, multi-server queue with preemptive priorities. Queue. Syst. 50 (2005) 81–107. [CrossRef] [Google Scholar]
  • M. Iftikhar, T. Singh, B. Landfeldt and M. Caglar, Multiclass G/M/1 queueing system with self-similar input and non-preemptive priority. Comput. Commun. 31 (2008) 1012–1027. [CrossRef] [Google Scholar]
  • M. Snipas and E. Valakevicius, Numerical-analytic model of multi-class, multi-server queue with nonpreemptive priorities, in Innovations and Advances in Computer Sciences and Engineering. Springer, Dordrecht (2009) 413–415. [Google Scholar]
  • X. Jin and G. Min, Modelling and analysis of priority queueing systems with multi-class self-similar network traffic: a novel and efficient queue-decomposition approach. IEEE Trans. Commun. 57 (2009) 1444–1452. [CrossRef] [Google Scholar]
  • A. Krishnamoorthy, V.C. Narayanan and S.R. Chakravarthy, The impact of priority generations in a multi-priority queueing system – a simulation approach, in Proceedings of the 2009 Winter Simulation Conference (WSC). IEEE (2009) 1622–1633. [Google Scholar]
  • A. Sleptchenko, J. Selen, I. Adan and G.-J. van Houtum, Joint queue length distribution of multi-class, single-server queues with preemptive priorities. Queue. Syst. 81 (2015) 379–395. [CrossRef] [Google Scholar]
  • V.A. Fajardo and S. Drekic, On a general mixed priority queue with server discretion. Stoch. Models 32 (2016) 643–673. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Kamath, S. Singh and M.S. Kumar, Multiclass queueing network modeling and traffic flow analysis for SDN-enabled mobile core networks with network slicing. IEEE Access 8 (2019) 417–430. [Google Scholar]
  • S. Lee, S. Dudin, O. Dudina, C. Kim and V. Klimenok, A priority queue with many customer types, correlated arrivals and changing priorities. Mathematics 8 (2020) 1–20. [Google Scholar]
  • A. Dudin, O. Dudina, S. Dudin and K. Samouylov, Analysis of single-server multi-class queue with unreliable service, batch correlated arrivals, customers impatience, and dynamical change of priorities. Mathematics 9 (2021) 1–17. [Google Scholar]
  • F.M. Alotaibi, I. Ullah and S. Ahmad, Modeling and performance evaluation of multi-class queuing system with QoS and priority constraints. Electronics 10 (2021) 1–25. [Google Scholar]
  • Y. Liu, X. Sun and K. Hovey, Scheduling to differentiate service in a multiclass service system. Oper. Res. 70 (2022) 527–544. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Chen, L. Xia, Z. Jiang, X. Peng and H. Xu, A two-class MAP/PH/1 weighted fair queueing system and its application to telecommunications. J. Amb. Intell. Human. Comput. 14 (2023) 16361–16372. [CrossRef] [Google Scholar]
  • R. Kulshrestha, S. Goel and P. Balhara, Transient analysis of enhanced hybrid spectrum access for QoS provisioning in multi-class cognitive radio networks. Wireless Netw. 30 (2024) 3075–3099. [CrossRef] [Google Scholar]
  • R. Kulshrestha and A. Singh, Transient analysis of energy-saving strategy for cognitive radio networks using G-queue with heterogeneity. Comput. Commun. 216 (2024) 295–306. [CrossRef] [Google Scholar]
  • H. Wu, J. Yan and L. Kuang, Asynchronous multi-class traffic management in wide area networks. IEEE Trans. Netw. Serv. Manage. 21 (2024) 1750–1763. [CrossRef] [Google Scholar]
  • L.A. Hillas, R. Caldentey and V. Gupta, Heavy traffic analysis of multi-class bipartite queueing systems under FCFS. Queue. Syst. 106 (2024) 239–284. [CrossRef] [Google Scholar]
  • S. Chen, I. Duenyas and S. Iravani, Admission and routing control of multiple queues with multiple types of customers. IISE Trans. 56 (2024) 1230–1244. [CrossRef] [Google Scholar]
  • Rakhee, G. Sharma and K. Priya, Analysis of G-queue with unreliable server. Opsearch 50 (2013) 334–345. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Sahba, B. Balciog̃lu and D. Banjevic, Analysis of the finite-source multiclass priority queue with an unreliable server and setup time. Nav. Res. Logistics (NRL) 60 (2013) 331–342. [CrossRef] [Google Scholar]
  • I. Atencia and P. Moreno, The discrete-time Geo/Geo/1 queue with negative customers and disasters. Comput. Oper. Res. 31 (2004) 1537–1548. [Google Scholar]
  • Rakhee and Shruti, Discrete-time analysis of communication networks with second optional service and negative user arrivals, in Communication and Intelligent Systems: Proceedings of ICCIS 2019. Springer Singapore, Singapore (2020) 243–257. [Google Scholar]
  • S.S. Sanga and K.S. Antala, Performance analysis and cost investigations for state-dependent single unreliable server finite queue under f-policy using GA and QNM. J. Comput. Appl. Math. 441 (2024) 1–28. [Google Scholar]
  • E. Moutzoukis and C. Langaris, Non-preemptive priorities and vacations in a multiclass retrial queueing system. Stoch. Models 12 (1996) 455–472. [CrossRef] [Google Scholar]
  • J.R. Artalejo, Analysis of an M/G/1 queue with constant repeated attempts and server vacations. Comput. Oper. Res. 24 (1997) 493–504. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Nekrasova, E. Morozov, D. Efrosinin and N. Stepanova, Stability analysis of a two-class system with constant retrial rate and unreliable server. Ann. Oper. Res. 331 (2023) 1029–1051. [CrossRef] [MathSciNet] [Google Scholar]
  • J.-T. Wang, N. Wang and A.S. Alfa, Discrete-time GI/G/1 retrial queues with time-controlled vacation policies. Acta Math. App. Sin. English Ser. 29 (2013) 689–704. [CrossRef] [Google Scholar]
  • M. Vaishnawi, S. Upadhyaya and R. Kulshrestha, Optimal cost analysis for discrete-time recurrent queue with bernoulli feedback and emergency vacation. Int. J. Appl. Comput. Math. 8 (2022) 254. [CrossRef] [Google Scholar]
  • J. Nocedal and S.J. Wright, Numerical Optimization. Springer (1999). [CrossRef] [Google Scholar]
  • J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95-International Conference on Neural Networks. Vol. 4. IEEE (1995) 1942–1948. [Google Scholar]
  • Y. Shi and R.C. Eberhart, Parameter selection in particle swarm optimization, in Evolutionary Programming VII: 7th International Conference, EP98 San Diego, California, USA, March 25–27, 1998 Proceedings 7 (1998) 591–600. [Google Scholar]
  • M. Sheikhan, R. Shahnazi and E. Hemmati, Adaptive active queue management controller for TCP communication networks using PSO-RBF models. Neural Comput. App. 22 (2013) 933–945. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.