Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1681 - 1701 | |
DOI | https://doi.org/10.1051/ro/2025056 | |
Published online | 02 July 2025 |
- ACEA: Automotive insights – charging ahead: accelerating the rollout of EU electric vehicle charging infrastructure (2024). https://www.acea.auto/publication/automotive-insights-charging-ahead-accelerating-the-rollout-of-eu-electric-vehicle-charging-infrastructure/ Accessed on 4 December 2024. [Google Scholar]
- A. Azerine, M. Golabi, A. Oulamara and L. Idoumghar, Enhancing electric vehicle charging schedules: a surrogate-assisted approach, in Proceedings of the Genetic and Evolutionary Computation Conference Companion (2024) 183–186. [Google Scholar]
- A. Azerine, A. Oulamara, M. Basset and L. Idoumghar, Improved methods for solving the electric vehicle charging scheduling problem to maximize the delive, in 2024 IEEE Congress on Evolutionary Computation (CEC). IEEE (2024) 1–8. [Google Scholar]
- A. Azerine, A. Oulamara, I. Zaidi, M. Basset and L. Idoumghar, Energy maximization for electric vehicle charging scheduling: meta-heuristic approaches, in 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE (2024) 1–6. [Google Scholar]
- P. Barman, L. Dutta, S. Bordoloi, A. Kalita, P. Buragohain, S. Bharali and B. Azzopardi, Renewable energy integration with electric vehicle technology: a review of the existing smart charging approaches. Renew. Sustain. Energy Rev. 183 (2023) 113518. [CrossRef] [Google Scholar]
- S. Bestvater and S. Shah, Electric vehicle charging infrastructure in the U.S. (2024). https://www.pewresearch.org/data-labs/2024/05/23/electric-vehicle-charging-infrastructure-in-the-u-s/?utm_source=chatgpt.com Accessed on 4 December 2024. [Google Scholar]
- Y. Cao, S. Liu, Z. He, X. Dai, X. Xie, R. Wang and S. Yu, Electric vehicle charging reservation under preemptive service, in 2019 1st International Conference on Industrial Artificial Intelligence (IAI). IEEE (2019) 1–6. [Google Scholar]
- EU-Parliament: Fit for 55: zero CO2 emissions for new cars and vans in 2035 (February 2023). https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035 Accessed on 4 December 2024. [Google Scholar]
- Eurostat: Final energy consumption in transport – detailed statistics (Sep 2024). https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=652642&utm_source=chatgpt.com Accessed on 4 December 2024. [Google Scholar]
- J. Fan, X. Meng, J. Tian, C. Xing, C. Wang and J. Wood, A review of transportation carbon emissions research using bibliometric analyses. J. Traffic Transp. Eng. (English Edition) 10 (2023) 878–899. [CrossRef] [Google Scholar]
- A. Fleck, Cars cause biggest share of transportation CO2 emissions (Sep 2023). https://www.statista.com/chart/30890/estimated-share-of-co2-emissions-in-the-transportation-sector/ Accessed on 1 October 2024. [Google Scholar]
- J. García-Álvarez, M.A. González and C.R. Vela, Metaheuristics for solving a real-world electric vehicle charging scheduling problem. Appl. Soft Comput. 65 (2018) 292–306. [CrossRef] [Google Scholar]
- A. Gogna and A. Tayal, Metaheuristics: review and application. J. Exper. Theor. Artif. Intell. 25 (2013) 503–526. [CrossRef] [Google Scholar]
- L. Gong, W. Cao, K. Liu and J. Zhao, Optimal charging strategy for electric vehicles in residential charging station under dynamic spike pricing policy. Sustain. Cities Soc. 63 (2020) 102474. [CrossRef] [Google Scholar]
- V. Gupta, S.R. Konda, R. Kumar and B.K. Panigrahi, Electric vehicle driver response evaluation in multiaggregator charging management with EV routing. IEEE Trans. Ind. App. 56 (2020) 6914–6924. [CrossRef] [Google Scholar]
- Z. Han, K. Grolinger, M. Capretz and S. Mir, Scheduling electric vehicle charging for grid load balancing, in IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. IEEE (2023) 1–7. [Google Scholar]
- IEA: Global EV outlook 2024: Trends in electric cars (2024). https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-cars Accessed on 4 December 2024. [Google Scholar]
- Q. Kang, J. Wang, M. Zhou and A.C. Ammari, Centralized charging strategy and scheduling algorithm for electric vehicles under a battery swapping scenario. IEEE Trans. Intell. Transp. Syst. 17 (2015) 659–669. [Google Scholar]
- J. Kim, S.Y. Son, J.M. Lee and H.T. Ha, Scheduling and performance analysis under a stochastic model for electric vehicle charging stations. Omega 66 (2017) 278–289 [CrossRef] [Google Scholar]
- M.S¸. Kuran, A.C. Viana, L. Iannone, D. Kofman, G. Mermoud and J.P. Vasseur, A smart parking lot management system for scheduling the recharging of electric vehicles. IEEE Trans. Smart Grid 6 (2015) 2942–2953. [CrossRef] [Google Scholar]
- W.L. Liu, Y.J. Gong, W.N. Chen, Z. Liu, H. Wang and J. Zhang, Coordinated charging scheduling of electric vehicles: a mixed-variable differential evolution approach. IEEE Trans. Intell. Transp. Syst. 21 (2019) 5094–5109. [Google Scholar]
- J. Liu, G. Lin, S. Huang, Y. Zhou, Y. Li and C. Rehtanz, Optimal EV charging scheduling by considering the limited number of chargers. IEEE Trans. Transp. Electr. 7 (2020) 1112–1122. [Google Scholar]
- W.L. Liu, Y.J. Gong, W.N. Chen, J. Zhong, S.W. Jean and J. Zhang, Heterogeneous multiobjective differential evolution for electric vehicle charging scheduling, in 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE (2021) 1–8. [Google Scholar]
- Y. Luo, T. Zhu, S. Wan, S. Zhang and K. Li, Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems. Energy 97 (2016) 359–368. [CrossRef] [Google Scholar]
- G. Maguire, Slow charge point rollout risks stalling us EV sales momentum (2024). https://www.reuters.com/markets/commodities/slow-charge-point-rollout-risks-stalling-us-ev-sales-momentum-maguire-2024-10-09/?utmsource=chatgpt.com Accessed on 4 December 2024. [Google Scholar]
- H. Morais, New approach for electric vehicles charging management in parking lots considering fairness rules. Electr. Power Syst. Res. 217 (2023) 109107. [CrossRef] [Google Scholar]
- N.Q. Nguyen, F. Yalaoui, L. Amodeo, H. Chehade and P. Toggenburger, Reactive rescheduling method for electric vehicles charging in dedicated residential zone parking, in 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE (2017) 1–6. [Google Scholar]
- L. Niu, P. Zhang and X. Wang, Hierarchical power control strategy on small-scale electric vehicle fast charging station. J. Clean. Prod. 199 (2018) 1043–1049. [CrossRef] [Google Scholar]
- G.C. Onwubolu and D. Davendra, Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization. Vol. 175. Springer Science & Business Media (2009). [Google Scholar]
- T. Panayiotou, M. Mavrovouniotis and G. Ellinas, On the fair-efficient charging scheduling of electric vehicles in parking structures, in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE (2021) 1627–1634. [Google Scholar]
- I. Rahman, P.M. Vasant, B.S.M. Singh and M. Abdullah-Al-Wadud, On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles. Alexandria Eng. J. 55 (2016) 419–426. [CrossRef] [Google Scholar]
- R. Salgotra and A.H. Gandomi, A novel multi-hybrid differential evolution algorithm for optimization of frame structures. Sci. Rep. 14 (2024) 4877. [CrossRef] [Google Scholar]
- S. Shao, F. Harirchi, D. Dave and A. Gupta, Preemptive scheduling of EV charging for providing demand response services. Sustain. Energy Grids Netw. 33 (2023) 100986. [CrossRef] [Google Scholar]
- S. Shao, H. Sartipizadeh and A. Gupta, Scheduling EV charging having demand with different reliability constraints. IEEE Trans. Intell. Transp. Syst. 24 (2023) 11018–11029. [CrossRef] [Google Scholar]
- M. Sulaman, M. Golabi, M. Essaid, J. Lepagnot, M. Brévilliers and L. Idoumghar, Surrogate-assisted metaheuristics for the facility location problem with distributed demands on network edges. Comput. Ind. Eng. 188 (2024) 109931. [CrossRef] [Google Scholar]
- I. Tiseo, Carbon dioxide emissions from transportation in the European Union (EU-27) from 1990 to 2022 (July 2024). https://www.statista.com/statistics/1200660/carbon-dioxide-emissions-transport-sector-european-union/?utm_source=chatgpt.com Accessed on 4 December 2024. [Google Scholar]
- M.H.S. Uiterkamp, M.E. Gerards and J.L. Hurink, Online electric vehicle charging with discrete charging rates. Sustain. Energy Grids Netw. 25 (2021) 100423. [CrossRef] [Google Scholar]
- S. Velamuri, M.P. Kantipudi, R. Sitharthan, D. Kanakadhurga, N. Prabaharan and A. Rajkumar, A q-learning based electric vehicle scheduling technique in a distribution system for power loss curtailment. Sustain. Comput. Inf. Syst. 36 (2022) 100798. [Google Scholar]
- Z. Wang, P. Jochem and W. Fichtner, A scenario-based stochastic optimization model for charging scheduling of electric vehicles under uncertainties of vehicle availability and charging demand. J. Clean. Prod. 254 (2020) 119886. [CrossRef] [Google Scholar]
- H. Wu, G.K.H. Pang, K.L. Choy and H.Y. Lam, Dynamic resource allocation for parking lot electric vehicle recharging using heuristic fuzzy particle swarm optimization algorithm. Appl. Soft Comput. 71 (2018) 538–552. [CrossRef] [Google Scholar]
- W. Wu, Y. Lin, R. Liu, Y. Li, Y. Zhang and C. Ma, Online EV charge scheduling based on time-of-use pricing and peak load minimization: properties and efficient algorithms. IEEE Trans. Intell. Transp. Syst. 23 (2020) 572–586. [Google Scholar]
- J. Wu, H. Su, J. Meng and M. Lin, Electric vehicle charging scheduling considering infrastructure constraints. Energy 278 (2023) 127806. [CrossRef] [Google Scholar]
- Z. Yang, K. Li, A. Foley and C. Zhang, Optimal scheduling methods to integrate plug-in electric vehicles with the power system: a review. IFAC Proc. Vol. 47 (2014) 8594–8603. [CrossRef] [Google Scholar]
- L. Yao, W.H. Lim and T.S. Tsai, A real-time charging scheme for demand response in electric vehicle parking station. IEEE Trans. Smart Grid 8 (2016) 52–62. [Google Scholar]
- I. Zaidi, A. Oulamara, L. Idoumghar and M. Basset, Optimal online electric vehicle charging scheduling in unbalanced three-phase power system, in International Conference on Computational Science and Its Applications. Springer (2020) 90–106. [Google Scholar]
- I. Zaidi, A. Oulamara, L. Idoumghar and M. Basset, Hybrid heuristic and metaheuristic for solving electric vehicle charging scheduling problem, in Evolutionary Computation in Combinatorial Optimization: 21st European Conference, EvoCOP 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings 21. Springer (2021) 219–235. [Google Scholar]
- I. Zaidi, A. Oulamara, L. Idoumghar and M. Basset, Maximizing the number of satisfied charging demands in electric vehicle charging scheduling problem, in International Conference on Artificial Evolution (Evolution Artificielle). Springer (2022) 89–102. [Google Scholar]
- I. Zaidi, A. Oulamara, L. Idoumghar and M. Basset, Minimizing grid capacity in preemptive electric vehicle charging orchestration: complexity, exact and heuristic approaches. Eur. J. Oper. Res. 312 (2024) 22–37. [CrossRef] [Google Scholar]
- I. Zaidi, A. Oulamara, L. Idoumghar and M. Basset, Maximizing the number of satisfied charging demands of electric vehicles on identical chargers. Omega 127 (2024) 103106. [CrossRef] [Google Scholar]
- L. Zhang and Y. Li, Optimal management for parking-lot electric vehicle charging by two-stage approximate dynamic programming. IEEE Trans. Smart Grid 8 (2015) 1722–1730. [Google Scholar]
- J. Zhang and A.C. Sanderson, JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13 (2009) 945–958. [CrossRef] [Google Scholar]
- A. Zhang, Q. Liu, J. Liu and L. Cheng, CASA: cost-effective EV charging scheduling based on deep reinforcement learning. Neural Comput. App. 36 (2024) 8355–8370. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.