Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 4, July-August 2025
Page(s) 2213 - 2218
DOI https://doi.org/10.1051/ro/2025083
Published online 14 August 2025
  • G. Dai and Z. Hu, P3-factors in the square of a tree. Graphs Comb. 36 (2020) 1913–1925. [CrossRef] [Google Scholar]
  • C. Godsil, Algebraic Combinatorics. Chapman and Hall Mathematics Series, New York (1993). [Google Scholar]
  • R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, Cambridge (1985). [Google Scholar]
  • H. Hua, Toughness and isolated toughness conditions for P≥3-factor uniform graphs. J. Appl. Math. Comput. 66 (2021) 809–821. [Google Scholar]
  • M. Johnson, D. Paulusma and C. Wood, Path factors and parallel knock-out schemes of almost claw-free graphs. Discrete Math. 310 (2010) 1413–1423. [Google Scholar]
  • A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Comb. Theory Ser. B 88 (2003) 195–218. [Google Scholar]
  • M. Kano and A. Saito, Star-factors with large components. Discrete Math. 312 (2012) 2005–2008. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Kano, H. Lu and Q. Yu, Component factors with large components in graphs. Appl. Math. Lett. 23 (2010) 385–389. [Google Scholar]
  • A. Klopp and E. Steffen, Fractional matchings, component-factors and edge-chromatic critical graphs. Graphs Comb. 37 (2021) 559–580. [CrossRef] [Google Scholar]
  • M. Lan and W. Gao, On the existence of {K1,1, K1,2, Ct}-factor – From high-dimensional space perspective. Int. J. Cogn. Comput. Eng. 3 (2022) 31–34. [Google Scholar]
  • H. Liu and X. Pan, Independence number and minimum degree for path-factor critical uniform graphs. Discrete Appl. Math. 359 (2024) 153–158. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Miao and S. Li, Characterizing star factors via the size,the spectral radius or the distance spectral radius of graphs. Discrete Appl. Math. 326 (2023) 17–32. [Google Scholar]
  • S. O, Spectral radius and matchings in graphs. Linear Algebra App. 614 (2021) 316–324. [Google Scholar]
  • J. Wu, A sufficient condition for the existence of fractional (g, f, n)-critical covered graphs. Filomat 38 (2024) 2177–2183. [MathSciNet] [Google Scholar]
  • J. Wu, Characterizing spanning trees via the size or the spectral radius of graphs. Aequ. Math. 98 (2024) 1441–1455. [Google Scholar]
  • L. You, M. Yang, W. So and W. Xi, On the spectrum of an equitable quotient matrix and its application. Linear Algebra App. 577 (2019) 21–40. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Zhang and H. Lin, Perfect matching and distance spectral radius in graphs and bipartite graphs. Discrete Appl. Math. 304 (2021) 315–322. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Zhou, Some results on path-factor critical avoidable graphs. Discuss. Math. Graph Theory 43 (2023) 233–244. [Google Scholar]
  • S. Zhou, Some spectral conditions for star-factors in bipartite graphs. Discrete Appl. Math. 369 (2025) 124–130. [Google Scholar]
  • S. Zhou and J. Wu, Spanning k-trees and distance spectral radius in graphs. J. Supercomput. 80 (2024) 23357–23366. [Google Scholar]
  • S. Zhou and J. Wu, A spectral condition for the existence of component factors in graphs. Discrete Appl. Math. 376 (2025) 141–150. [Google Scholar]
  • S. Zhou, Z. Sun and H. Liu, Some sufficient conditions for path-factor uniform graphs. Aequ. Math. 97 (2023) 489–500. [CrossRef] [Google Scholar]
  • S. Zhou, Q. Pan and Y. Xu, A new result on orthogonal factorizations in networks. Filomat 38 (2024) 7235–7244. [Google Scholar]
  • S. Zhou, Z. Sun and H. Liu, Distance signless Laplacian spectral radius for the existence of path-factors in graphs. Aequ. Math. 98 (2024) 727–737. [Google Scholar]
  • S. Zhou, Z. Sun and H. Liu, D-index and Q-index for spanning trees with leaf degree at most k in graphs. Discrete Math. 347 (2024) 113927. [CrossRef] [Google Scholar]
  • S. Zhou, Y. Xu and Z. Sun, Some results about star-factors in graphs. Contrib. Discrete Math. 19 (2024) 154–162. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Zhou, Y. Zhang and H. Liu, Some properties of (a, b, k)-critical graphs. Filomat 38 (2024) 5885–5894. [Google Scholar]
  • S. Zhou, Y. Zhang and Z. Sun, The Aα-spectral radius for path-factors in graphs. Discrete Math. 347 (2024) 113940. [CrossRef] [Google Scholar]
  • S. Zhou, Z. Sun and Y. Zhang, Spectral radius and k-factor-critical graphs. J. Supercomput. 81 (2025) 456. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.