Open Access
| Issue |
RAIRO-Oper. Res.
Volume 59, Number 5, September-October 2025
|
|
|---|---|---|
| Page(s) | 3169 - 3205 | |
| DOI | https://doi.org/10.1051/ro/2025119 | |
| Published online | 24 October 2025 | |
- M. Hamid, M.M. Nasiri and M. Rabbani, A mixed closed-open multi-depot routing and scheduling problem for homemade meal delivery incorporating drone and crowd-sourced fleet: a self-adaptive hyper-heuristic approach. Eng. App. Artif. Intell. 120 (2023) 105876. [Google Scholar]
- A. Arishi, K. Krishnan and M. Arishi, Machine learning approach for truck-drones based last-mile delivery in the era of industry 4.0. Eng. App. Artif. Intell. 116 (2022) 105439. [Google Scholar]
- R.I. Mukhamediev, K. Yakunin, M. Aubakirov, I. Assanov, Y. Kuchin, A. Symagulov, V. Levashenko, E. Zaitseva, D. Sokolov and Y. Amirgaliyev, Coverage path planning optimization of heterogeneous UAVs group for precision agriculture. IEEE Access 11 (2023) 5789–5803. [Google Scholar]
- Y. Xu, X. Xue, Z. Sun, W. Gu, L. Cui, Y. Jin and Y. Lan, Joint path planning and scheduling for vehicle-assisted multiple unmanned aerial systems plant protection operation. Comput. Electron. Agric. 200 (2022) 107221. [Google Scholar]
- Y. Xu, Z. Sun, X. Xue, W. Gu and B. Peng, A hybrid algorithm based on MOSFLA and GA for multi-UAVs plant protection task assignment and sequencing optimization. Appl. Soft Comput. 96 (2020) 106623. [Google Scholar]
- U.M.R. Mogili and B.B.V.L. Deepak, Review on application of drone systems in precision agriculture. Proc. Comput. Sci. 133 (2018) 502–509. [Google Scholar]
- M. Joerss, F. Neuhaus and J. Schröder, How customer demands are reshaping last-mile delivery. McKinsey Q. 17 (2016) 1–5. [Google Scholar]
- Y. Xia, W. Zeng, C. Zhang and H. Yang, A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones. Transp. Res. Part B: Methodol. 171 (2023) 80–110. [Google Scholar]
- B. Skorup and C. Haaland, How drones can help fight the coronavirus, in Mercatus Center Research Paper Series, Special Edition Policy Brief (2020). [Google Scholar]
- C.C. Murray and A.G. Chu, The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transp. Res. Part C: Emerg. Technol. 54 (2015) 86–109. [Google Scholar]
- A. Otto, N. Agatz, J. Campbell, B. Golden and E. Pesch, Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72 (2018) 411–458. [CrossRef] [MathSciNet] [Google Scholar]
- I. Khoufi, A. Laouiti and C. Adjih, A survey of recent extended variants of the traveling salesman and vehicle routing problems for unmanned aerial vehicles. Drones 3 (2019) 66. [Google Scholar]
- S.H. Chung, B. Sah and J. Lee, Optimization for drone and drone-truck combined operations: a review of the state of the art and future directions. Comput. Oper. Res. 123 (2020) 105004. [Google Scholar]
- G. Macrina, L.D.P. Pugliese, F. Guerriero and G. Laporte, Drone-aided routing: a literature review. Transp. Res. Part C: Emerg. Technol. 120 (2020) 102762. [Google Scholar]
- D. Rojas Viloria, E.L. Solano-Charris, A. Mu˜noz-Villamizar and J.R. Montoya-Torres, Unmanned aerial vehicles/drones in vehicle routing problems: a literature review. Int. Trans. Oper. Res. 28 (2021) 1626–1657. [Google Scholar]
- M. Moshref-Javadi and M. Winkenbach, Applications and research avenues for drone-based models in logistics: a classification and review. Expert Syst. App. 177 (2021) 114854. [Google Scholar]
- T. Benarbia and K. Kyamakya, A literature review of drone-based package delivery logistics systems and their implementation feasibility. Sustainability 14 (2021) 360. [Google Scholar]
- Y.-J. Liang and Z.-X. Luo, A survey of truck–drone routing problem: literature review and research prospects. J. Oper. Res. Soc. Chin. 10 (2022) 343–377. [Google Scholar]
- R. Zhang, L. Dou, B. Xin, C. Chen, F. Deng and J. Chen, A review on the truck and drone cooperative delivery problem. Unmanned Syst. 12 (2024) 823–847. [Google Scholar]
- N. Agatz, P. Bouman and M. Schmidt, Optimization approaches for the traveling salesman problem with drone. Transp. Sci. 52 (2018) 965–981. [CrossRef] [Google Scholar]
- P. Bouman, N. Agatz and M. Schmidt, Dynamic programming approaches for the traveling salesman problem with drone. Networks 72 (2018) 528–542. [CrossRef] [MathSciNet] [Google Scholar]
- Q.M. Ha, Y. Deville, Q.D. Pham and M.H. Hà, On the min-cost traveling salesman problem with drone. Transp. Res. Part C: Emerg. Technol. 86 (2018) 597–621. [Google Scholar]
- Q.M. Ha, Y. Deville, Q.D. Pham and M.H. Hà, A hybrid genetic algorithm for the traveling salesman problem with drone. J. Heuristics 26 (2020) 219–247. [Google Scholar]
- J. Liu, Z. Guan and X. Xie, Truck and drone in tandem route scheduling under sparse demand distribution, in: 2018 8th International Conference on Logistics, Informatics and Service Sciences (LISS). IEEE (2018) 1–6. [Google Scholar]
- M. Marinelli, L. Caggiani, M. Ottomanelli and M. Dell’Orco, En route truck–drone parcel delivery for optimal vehicle routing strategies. IET Intell. Transp. Syst. 12 (2018) 253–261. [Google Scholar]
- S. Poikonen, B. Golden and E.A. Wasil, A branch-and-bound approach to the traveling salesman problem with a drone. INFORMS J. Comput. 31 (2019) 335–346. [Google Scholar]
- M.A. Nguyen, K. Sano and V.T. Tran, A Monte Carlo tree search for traveling salesman problem with drone. Asian Transp. Stud. 6 (2020) 100028. [Google Scholar]
- P.L. Gonzalez-R, D. Canca, J.L. Andrade-Pineda, M. Calle and J.M. Leon-Blanco, Truck-drone team logistics: a heuristic approach to multi-drop route planning. Transp. Res. Part C: Emerg. Technol. 114 (2020) 657–680. [Google Scholar]
- R. Rich, Inverting the truck-drone network problem to find best case configuration. Adv. Oper. Res. 2020 (2020) 4053983. [Google Scholar]
- S.A. Vásquez, G. Angulo and M.A. Klapp, An exact solution method for the TSP with drone based on decomposition. Comput. Oper. Res. 127 (2021) 105127. [CrossRef] [Google Scholar]
- R. Roberti and M. Ruthmair, Exact methods for the traveling salesman problem with drone. Transp. Sci. 55 (2021) 315–335. [Google Scholar]
- A. Ponza, Optimization of drone-assisted parcel delivery. Master Thesis, Universita Degli Studi Di Padova (2016). [Google Scholar]
- S. Mourelo Ferrandez, T. Harbison, T. Webwer, R. Sturges and R. Rich, Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. J. Ind. Eng. Manage. 9 (2016) 374–388. [Google Scholar]
- J.C. De Freitas and P.H.V. Penna, A variable neighborhood search for flying sidekick traveling salesman problem. Int. Trans. Oper. Res. 27 (2020) 267–290. [Google Scholar]
- A.M. Ham, Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming. Transp. Res. Part C: Emerg. Technol. 91 (2018) 1–14. [Google Scholar]
- R.G. Mbiadou Saleu, L. Deroussi, D. Feillet, N. Grangeon and A. Quilliot, An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem. Networks 72 (2018) 459–474. [Google Scholar]
- S. Kim and I. Moon, Traveling salesman problem with a drone station. IEEE Trans. Syst. Man Cybern.: Syst. 49 (2018) 42–52. [Google Scholar]
- M. Dell’Amico, R. Montemanni and S. Novellani, Matheuristic algorithms for the parallel drone scheduling traveling salesman problem. Ann. Oper. Res. 289 (2020) 211–226. [Google Scholar]
- Z. Wang and J.-B. Sheu, Vehicle routing problem with drones. Transp. Res. Part B: Methodol. 122 (2019) 350–364. [Google Scholar]
- P.L. Gonzalez-R, D. Sanchez-Wells and J.L. Andrade-Pineda, A bi-criteria approach to the truck-multidrone routing problem. Expert Syst. Appl. 243 (2024) 122809. [Google Scholar]
- M. Boccia, A. Mancuso, A. Masone, T. Murino and C. Sterle, New features for customer classification in the flying sidekick traveling salesman problem. Expert Syst. Appl. 247 (2024) 123106. [Google Scholar]
- S. Meng, Y. Chen and D. Li, The multi-visit drone-assisted pickup and delivery problem with time windows. Eur. J. Oper. Res. 314 (2024) 685–702. [Google Scholar]
- Q. Luo, G. Wu, A. Trivedi, F. Hong, L. Wang and D. Srinivasan, Multi-objective optimization algorithm with adaptive resource allocation for truck-drone collaborative delivery and pick-up services. IEEE Trans. Intell. Transp. Syst. 24 (2023) 9642–9657. [Google Scholar]
- J. Huang, Y. Luo, Q. Quan, B. Wang, X. Xue and Y. Zhang, An autonomous task assignment and decision-making method for coverage path planning of multiple pesticide spraying UAVs. Comput. Electron. Agric. 212 (2023) 108128. [Google Scholar]
- S. Fang, Y. Ru, C. Hu, F. Yang, J. Xue and J. Zhou, Planning the temporary takeoff/landing site’s location for a pesticide spraying helicopter based on an intelligent fusion algorithm. Comput. Electron. Agric. 209 (2023) 107826. [Google Scholar]
- A. Bogyrbayeva, T. Yoon, H. Ko, S. Lim, H. Yun and C. Kwon, A deep reinforcement learning approach for solving the traveling salesman problem with drone. Transp. Res. Part C: Emerg. Technol. 148 (2023) 103981. [Google Scholar]
- Z. Bi, X. Guo, J. Wang, S. Qin and G. Liu, Deep reinforcement learning for truck-drone delivery problem. Drones 7 (2023) 445. [Google Scholar]
- M.A. Boschetti and S. Novellani, Last-mile delivery with drone and lockers. Networks 83 (2024) 213–235. [Google Scholar]
- H. Li and F. Wang, Branch-price-and-cut for the truck–drone routing problem with time windows. Nav. Res. Logistics (NRL) 70 (2023) 184–204. [Google Scholar]
- T. Thomas, S. Srinivas and C. Rajendran, Collaborative truck multi-drone delivery system considering drone scheduling and en route operations. Ann. Oper. Res. 339 (2024) 693–739. [Google Scholar]
- S. Meng, X. Guo, D. Li and G. Liu, The multi-visit drone routing problem for pickup and delivery services. Transp. Res. Part E: Logistics Transp. Rev. 169 (2023) 102990. [Google Scholar]
- F. Tamke and U. Buscher, The vehicle routing problem with drones and drone speed selection. Comput. Oper. Res. 152 (2023) 106112. [Google Scholar]
- Y. Li, Y. Wu, X. Xue, X. Liu, Y. Xu and X. Liu, Efficiency-first spraying mission arrangement optimization with multiple UAVs in heterogeneous farmland with varying pesticide requirements. Inf. Process. Agric. 11 (2024) 237–248. [Google Scholar]
- J. Zhang and Y. Li, Collaborative vehicle-drone distribution network optimization for perishable products in the epidemic situation. Comput. Oper. Res. 149 (2023) 106039. [Google Scholar]
- J. Chen, R. Zhang, H. Zhao, J. Li and J. He, Path planning of multiple unmanned aerial vehicles covering multiple regions based on minimum consumption ratio. Aerospace 10 (2023) 93. [Google Scholar]
- Z. Luo, R. Gu, M. Poon, Z. Liu and A. Lim, A last-mile drone-assisted one-to-one pickup and delivery problem with multi-visit drone trips. Comput. Oper. Res. 148 (2022) 106015. [Google Scholar]
- R.J. Kuo, S. H. Lu, P.Y. Lai and S.T.W. Mara, Vehicle routing problem with drones considering time windows. Expert Syst. Appl. 191 (2022) 116264. [Google Scholar]
- D. Lei, Z. Cui and M. Li, A dynamical artificial bee colony for vehicle routing problem with drones. Eng. App. Artif. Intell. 107 (2022) 104510. [Google Scholar]
- Y. Li, Y. Xu, X. Xue, X. Liu and X. Liu, Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution. Biosyst. Eng. 214 (2022) 177–192. [Google Scholar]
- T. Bányai, Impact of the integration of first-mile and last-mile drone-based operations from trucks on energy efficiency and the environment. Drones 6 (2022) 249. [Google Scholar]
- R. Gu, M. Poon, Z. Luo, Y. Liu and Z. Liu, A hierarchical solution evaluation method and a hybrid algorithm for the vehicle routing problem with drones and multiple visits. Transp. Res. Part C: Emerg. Technol. 141 (2022) 103733. [Google Scholar]
- X. Wen and G. Wu, Heterogeneous multi-drone routing problem for parcel delivery. Transp. Res. Part C: Emerg. Technol. 141 (2022) 103763. [Google Scholar]
- M.A. Nguyen, G.T.H. Dang, M.H. Hà and M.T. Pham, The min-cost parallel drone scheduling vehicle routing problem. Eur. J. Oper. Res. 299 (2022) 910–930. [Google Scholar]
- Y. Wang, Z. Wang, X. Hu, G. Xue and X. Guan, Truck–drone hybrid routing problem with time-dependent road travel time. Transp. Res. Part C: Emerg. Technol. 144 (2022) 103901. [Google Scholar]
- M.A. Masmoudi, S. Mancini, R. Baldacci and Y.H. Kuo, Vehicle routing problems with drones equipped with multi-package payload compartments. Transp. Res. Part E: Logistics Transp. Rev. 164 (2022) 102757. [CrossRef] [Google Scholar]
- L. Zhen, J. Gao, Z. Tan, S. Wang and R. Baldacci, Branch-price-and-cut for trucks and drones cooperative delivery. IISE Trans. 55 (2023) 271–287. [Google Scholar]
- J.C. Pina-Pardo, D.F. Silva and A.E. Smith, The traveling salesman problem with release dates and drone resupply. Comput. Oper. Res. 129 (2021) 105170. [Google Scholar]
- F. Tamke and U. Buscher, A branch-and-cut algorithm for the vehicle routing problem with drones. Transp. Res. Part B: Methodol. 144 (2021) 174–203. [Google Scholar]
- M. Boccia, A. Masone, A. Sforza and C. Sterle, An exact approach for a variant of the FS-TSP. Transp. Res. Proc. 52 (2021) 51–58. [Google Scholar]
- S. Cavani, M. Iori and R. Roberti, Exact methods for the traveling salesman problem with multiple drones. Transp. Res. Part C: Emerg. Technol. 130 (2021) 103280. [Google Scholar]
- M. Boccia, A. Masone, A. Sforza and C. Sterle, A column-and-row generation approach for the flying sidekick travelling salesman problem. Transp. Res. Part C: Emerg. Technol. 124 (2021) 102913. [Google Scholar]
- J. Euchi and A. Sadok, Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones. Phys. Commun. 44 (2021) 101236. [Google Scholar]
- Z. Luo, M. Poon, Z. Zhang, Z. Liu and A. Lim, The multi-visit traveling salesman problem with multi-drones. Transp. Res. Part C: Emerg. Technol. 128 (2021) 103172. [Google Scholar]
- H. Baik and J. Valenzuela, An optimization drone routing model for inspecting wind farms. Soft Comput. 25 (2021) 2483–2498. [Google Scholar]
- M. Dell’Amico, R. Montemanni and S. Novellani, Modeling the flying sidekick traveling salesman problem with multiple drones. Networks 78 (2021) 303–327. [Google Scholar]
- Y. Liu, Z. Liu, J. Shi, G. Wu and W. Pedrycz, Two-echelon routing problem for parcel delivery by cooperated truck and drone. IEEE Trans. Syst. Man Cybern.: Syst. 51 (2020) 7450–7465. [Google Scholar]
- S. Poikonen and B. Golden, The mothership and drone routing problem. INFORMS J. Comput. 32 (2020) 249–262. [Google Scholar]
- P. Deng, G. Amirjamshidi and M. Roorda, A vehicle routing problem with movement synchronization of drones, sidewalk robots, or foot-walkers. Transp. Res. Proc. 46 (2020) 29–36. [Google Scholar]
- P. Kitjacharoenchai, B.C. Min and S. Lee, Two echelon vehicle routing problem with drones in last mile delivery. Int. J. Prod. Econ. 225 (2020) 107598. [Google Scholar]
- I. Dayarian, M. Savelsbergh and J.P. Clarke, Same-day delivery with drone resupply. Transp. Sci. 54 (2020) 229–249. [Google Scholar]
- M. Salama and S. Srinivas, Joint optimization of customer location clustering and drone-based routing for last-mile deliveries. Transp. Res. Part C: Emerg. Technol. 114 (2020) 620–642. [Google Scholar]
- C.C. Murray and R. Raj, The multiple flying sidekicks traveling salesman problem: parcel delivery with multiple drones. Transp. Res. Part C: Emerg. Technol. 110 (2020) 368–398. [Google Scholar]
- D.N. Das, R. Sewani, J. Wang and M.K. Tiwari, Synchronized truck and drone routing in package delivery logistics. IEEE Trans. Intell. Transp. Syst. 22 (2020) 5772–5782. [Google Scholar]
- H. Li, H. Wang, J. Chen and M. Bai, Two-echelon vehicle routing problem with time windows and mobile satellites. Transp. Res. Part B: Methodol. 138 (2020) 179–201. [Google Scholar]
- H. Huang, A.V. Savkin and C. Huang, Scheduling of a parcel delivery system consisting of an aerial drone interacting with public transportation vehicles. Sensors 20 (2020) 2045. [Google Scholar]
- S. Poikonen and B. Golden, Multi-visit drone routing problem. Comput. Oper. Res. 113 (2020) 104802. [CrossRef] [MathSciNet] [Google Scholar]
- G.C. Cri¸san and E. Nechita, On a cooperative truck-and-drone delivery system. Proc. Comput. Sci. 159 (2019) 38–47. [Google Scholar]
- P. Kitjacharoenchai, M. Ventresca, M. Moshref-Javadi, S. Lee, J.M. Tanchoco and P.A. Brunese, Multiple traveling salesman problem with drones: mathematical model and heuristic approach. Comput. Ind. Eng. 129 (2019) 14–30. [Google Scholar]
- D. Schermer, M. Moeini and O. Wendt, A matheuristic for the vehicle routing problem with drones and its variants. Transp. Res. Part C: Emerg. Technol. 106 (2019) 166–204. [Google Scholar]
- H.Y. Jeong, B.D. Song and S. Lee, Truck-drone hybrid delivery routing: payload-energy dependency and no-fly zones. Int. J. Prod. Econ. 214 (2019) 220–233. [CrossRef] [Google Scholar]
- D. Schermer, M. Moeini and O. Wendt, A hybrid VNS/Tabu search algorithm for solving the vehicle routing problem with drones and en route operations. Comput. Oper. Res. 109 (2019) 134–158. [Google Scholar]
- D. Sacramento, D. Pisinger and S. Ropke, An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transp. Res. Part C: Emerg. Technol. 102 (2019) 289–315. [Google Scholar]
- W.C. Chiang, Y. Li, J. Shang and T.L. Urban, Impact of drone delivery on sustainability and cost: realizing the UAV potential through vehicle routing optimization. Appl. Energy 242 (2019) 1164–1175. [Google Scholar]
- A. Karak and K. Abdelghany, The hybrid vehicle-drone routing problem for pick-up and delivery services. Transp. Res. Part C: Emerg. Technol. 102 (2019) 427–449. [Google Scholar]
- P. Kitjacharoenchai and S. Lee, Vehicle routing problem with drones for last mile delivery. Proc. Manuf. 39 (2019) 314–324. [Google Scholar]
- Y. Liu, Z. Luo, Z. Liu, J. Shi and G. Cheng, Cooperative routing problem for ground vehicle and unmanned aerial vehicle: the application on intelligence, surveillance, and reconnaissance missions. IEEE Access 7 (2019) 63504–63518. [Google Scholar]
- K. Peng, J. Du, F. Lu, Q. Sun, Y. Dong, P. Zhou and M. Hu, A hybrid genetic algorithm on routing and scheduling for vehicle-assisted multi-drone parcel delivery. IEEE Access 7 (2019) 49191–49200. [Google Scholar]
- D. Wang, P. Hu, J. Du, P. Zhou, T. Deng and M. Hu, Routing and scheduling for hybrid truck-drone collaborative parcel delivery with independent and truck-carried drones. IEEE Int. Things J. 6 (2019) 10483–10495. [Google Scholar]
- D. Schermer, M. Moeini and O. Wendt, The traveling salesman drone station location problem, in World Congress on Global Optimization. Springer, Cham (2019). [Google Scholar]
- J.G. Carlsson and S. Song, Coordinated logistics with a truck and a drone. Manage. Sci. 64 (2018) 4052–4069. [Google Scholar]
- Y.S. Chang and H.J. Lee, Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Syst. Appl. 104 (2018) 307–317. [Google Scholar]
- E.E. Yurek and H.C. Ozmutlu, A decomposition-based iterative optimization algorithm for traveling salesman problem with drone. Transp. Res. Part C: Emerg. Technol. 91 (2018) 249–262. [Google Scholar]
- K. Peng, W. Liu, Q. Sun, X. Ma, M. Hu, D. Wang and J. Liu, Wide-area vehicle-drone cooperative sensing: opportunities and approaches. IEEE Access 7 (2018) 1818–1828. [Google Scholar]
- D. Schermer, M. Moeini and O. Wendt, Algorithms for solving the vehicle routing problem with drones, in Asian Conference on Intelligent Information and Database Systems. Springer, Cham (2018) 352–361. [Google Scholar]
- M.W. Ulmer and B.W. Thomas, Same-day delivery with heterogeneous fleets of drones and vehicles. Networks 72 (2018) 475–505. [Google Scholar]
- M. Hu, W. Liu, K. Peng, X. Ma, W. Cheng, J. Liu and B. Li, Joint routing and scheduling for vehicle-assisted multidrone surveillance. IEEE Int. Things J. 6 (2018) 1781–1790. [Google Scholar]
- N. Boysen, D. Briskorn, S. Fedtke and S. Schwerdfeger, Drone delivery from trucks: drone scheduling for given truck routes. Networks 72 (2018) 506–527. [Google Scholar]
- B.S. Faiçal, H. Freitas, P.H. Gomes, L.Y. Mano, G. Pessin, A.C. de Carvalho and J. Ueyama, An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric. 138 (2017) 210–223. [Google Scholar]
- Z. Luo, Z. Liu and J. Shi, A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle. Sensors 17 (2017) 1144. [Google Scholar]
- S. Poikonen, X. Wang and B. Golden, The vehicle routing problem with drones: extended models and connections. Networks 70 (2017) 34–43. [Google Scholar]
- Y. Guo, F. Zhang, S. Chang, Z. Li and Z. Li, Research on a multiobjective cooperative operation scheduling method for agricultural machinery across regions with time windows. Comput. Electron. Agric. 224 (2024) 109121. [Google Scholar]
- M. Ariza-Sentís, S. Vélez, H. Baja, R.G. Valenti and J. Valente, An aerial framework for Multi-View grape bunch detection and route Optimization using ACO. Comput. Electron. Agric. 221 (2024) 108972. [Google Scholar]
- J. Jiang, Y. Dai, F. Yang and Z. Ma, A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services. Eur. J. Oper. Res. 312 (2024) 125–137. [Google Scholar]
- Y. Tang, K. Huang, Z. Tan, M. Fang and H. Huang, Multi-subswarm cooperative particle swarm optimization algorithm and its application. Inf. Sci. 677 (2024) 120887. [Google Scholar]
- T.Y. Chen, Z.H. Miao, W.M. Li and Q.K. Pan, A learning-based memetic algorithm for a cooperative task allocation problem of multiple unmanned aerial vehicles in smart agriculture. Swarm Evol. Comput. 91 (2024) 101694. [Google Scholar]
- M. Plessen, Path planning for spot spraying with UAVs combining tsp and area coverages. Smart Agric. Technol. 11 (2025) 100965. [Google Scholar]
- Z. Jiang, K. Meng and C. Chen, Coverage path planning based on recursive polygonal decomposition for multiple regions, in 2024 43rd Chinese Control Conference (CCC). IEEE (2024) 2076–2081. [Google Scholar]
- J. Huang, B. Du, Y. Zhang, Q. Quan, B. Wang and L. Mu, A pesticide spraying mission allocation and path planning with multicopters. IEEE Trans. Aerosp. Electron. Syst. 60 (2024) 2277–2291. [Google Scholar]
- J. Liu, Y. Lin, X. Zhang, J. Yin, X. Zhang, Y. Feng and Q. Qian, Agricultural UAV path planning based on a differentiated creative search algorithm with multi-strategy improvement. Machines 12 (2024) 591. [Google Scholar]
- Y. Long, G. Xu, J. Zhao, B. Xie and M. Fang, Dynamic truck–UAV collaboration and integrated route planning for resilient urban emergency response. IEEE Trans. Eng. Manage. 71 (2024) 9826–9838. [Google Scholar]
- T.I. Faiz, C. Vogiatzis, J. Liu and M. Noor-E-Alam, A robust optimization framework for two-echelon vehicle and UAV routing for post-disaster humanitarian logistics operations. Networks 84 (2024) 200–219. [Google Scholar]
- T. Calamoneri, F. Corò and S. Mancini, Management of a post-disaster emergency scenario through unmanned aerial vehicles: multi-depot multi-trip vehicle routing with total completion time minimization. Expert Syst. Appl. 251 (2024) 123766. [Google Scholar]
- J. Liu, Z. Guan and X. Xie, Truck and drone in tandem route scheduling under sparse demand distribution, in 2018 8th International Conference on Logistics, Informatics and Service Sciences (LISS). IEEE (2018) 1–6. [Google Scholar]
- S. Tian, X. Wen, B. Wei and G. Wu, Cooperatively routing a truck and multiple drones for target surveillance. Sensors 22 (2024) 2909. [Google Scholar]
- Y. Luo, X. Deng, W. Zhang, Y. Ke, S. Wan and Y. Qian, Collaborative intelligent delivery with one truck and multiple heterogeneous drones in covid-19 pandemic environment. IEEE Trans. Intell. Transp. Syst. 25 (2024) 7907–7920. [Google Scholar]
- M. Lin, Y. Chen, R. Han and Y. Chen, Discrete optimization on truck-drone collaborative transportation system for delivering medical resources. Discrete Dyn. Nat. Soc. 2022 (2022) 1811288. [Google Scholar]
- P. Bowes, Pitney bowes parcel shipping index. Available online: https://www.pitneybowes.com/us/shipping-index.html (2022). Accessed on 13 December 2022. [Google Scholar]
- M. Dektas, Workhorse group receives patent for horsefly delivery truck-launched drone package delivery system. Available online: https://www.sonnenseite.com/en/future/workhorse-group-receives-patent-for-horsefly-delivery-truck-launched-drone-package-delivery-system.html (2018). Accessed on 02 February 2023. [Google Scholar]
- G.Q. Li, X.G. Zhou, J. Yin and Q.Y. Xiao, An UAV scheduling and planning method for post-disaster survey. Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci. 40 (2014) 169–172. [Google Scholar]
- X. Weng, W. She, H. Fan, J. Zhang and L. Yun, Multi-depot vehicle routing problem with drones in emergency logistics. Cluster Comput. 28 (2025) 1–27. [Google Scholar]
- W. Peng, D. Wang, Y. Yin and T.C.E. Cheng, Multi-agent deep reinforcement learning-based truck-drone collaborative routing with dynamic emergency response. Transp. Res. Part E: Logistics Transp. Rev. 195 (2025) 103974. [Google Scholar]
- G. Xu and Q. Lyu, Vehicle routing problem for collaborative multidepot petrol replenishment under emergency conditions. J. Adv. Transp. 2021 (2021) 5531500. [Google Scholar]
- S. Wang, C. Zheng and S. Wandelt, Policy challenges for coordinated delivery of trucks and drones. J. Air Transp. Res. Soc. 2 (2024) 100001. [Google Scholar]
- C. Kaplan, Everyday militarisms: drones and the blurring of the civilian–military divide during COVID-19, in Drone Aesthetics (2024) 98. [Google Scholar]
- J. Euchi, Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems? Chin. J. Aeronaut. 34 (2021) 182–190. [Google Scholar]
- R. Sham, C.S. Siau, S. Tan, D.C. Kiu, H. Sabhi, H.Z. Thew and M.H.M. Ramli, Drone usage for medicine and vaccine delivery during the covid-19 pandemic: attitude of health care workers in rural medical centres. Drones 6 (2022) 109. [Google Scholar]
- S.H. Lu, M.F. Benaglia, A.T. Nguyen, E.R. Rivera and J.W. Cheng, Vehicle routing problem with drones as an aid for epidemic relief. Int. J. Shipping Transp. Logistics 18 (2024) 249–280. [Google Scholar]
- P. Qi, L. Zhang, Z. Wang, H. Han, J. Müller, T. Li and X. He, Effect of operational parameters of unmanned aerial vehicle (UAV) on droplet deposition in trellised pear orchard. Drones 7 (2023) 57. [Google Scholar]
- C.J. Chen, Y.Y. Huang, Y.S. Li, Y.C. Chen, C.Y. Chang and Y.M. Huang, Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access 9 (2021) 21986–21997. [Google Scholar]
- M.M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35 (1987) 254–265. [Google Scholar]
- X. Wang, S. Poikonen and B. Golden, The vehicle routing problem with drones: several worst-case results. Optim. Lett. 11 (2017) 679–697. [CrossRef] [MathSciNet] [Google Scholar]
- L. Di Puglia Pugliese and F. Guerriero, Last-mile deliveries by using drones and classical vehicles, in International Conference on Optimization and Decision Science. Springer, Cham (2017) 557–565. [Google Scholar]
- M. Desrochers, J. Desrosiers and M. Solomon, A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40 (1992) 342–354. [Google Scholar]
- VRP problem instances, Available at: http://www.branchandcut.org/VRP/data/ (1995). [Google Scholar]
- D. Russell, J.J. Coyle, K. Ruamsook and E.A. Thomchick, The real impact of high transportation costs. CSCMP’s Supply Chain Quarterly (2014). [Google Scholar]
- J.M. Sanchez-Gomez, M.A. Vega-Rodríguez and C.J. Pérez, An indicator-based multi-objective optimization approach applied to extractive multi-document text summarization. IEEE Latin Am. Trans. 17 (2019) 1291–1299. [Google Scholar]
- Y. Ye, Q. Lin, K.C. Wong, J. Li, Z. Ming and C.A.C. Coello, A localized decomposition evolutionary algorithm for imbalanced multi-objective optimization. Eng. App. Artif. Intell. 129 (2024) 107564. [Google Scholar]
- S. Sahraei and M. Asadzadeh, Cluster-based multi-objective optimization for identifying diverse design options: application to water resources problems. Environ. Modell. Softw. 135 (2021) 104902. [Google Scholar]
- H.T. Kahraman, M. Akbel, S. Duman, M. Kati and H.H. Sayan, Unified space approach-based dynamic switched crowding (DSC): a new method for designing pareto-based multi/many-objective algorithms. Swarm Evol. Comput. 75 (2022) 101196. [Google Scholar]
- B.D. Song, K. Park and J. Kim, Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput. Ind. Eng. 120 (2018) 418–428. [Google Scholar]
- E. Cengiz, C. Yilmaz, H.T. Kahraman and Ç. Suiçmez, Effects of variable UAV speed on optimization of travelling salesman problem with drone (TSP-D), in Smart Applications with Advanced Machine Learning and Human-Centred Problem Design. Springer, Cham (2023) 295–305. [Google Scholar]
- I. Barbahan, V. Baikalov, V. Vyatkin and A. Filchenkov, Multi-agent deep reinforcement learning-based algorithm for fast generalization on routing problems. Proc. Comput. Sci. 193 (2021) 228–238. [Google Scholar]
- U. Ermağan, B. Yıldız and F.S. Salman, A learning based algorithm for drone routing. Comput. Oper. Res. 137 (2022) 105524. [Google Scholar]
- I. Bello, H. Pham, Q.V. Le, M. Norouzi and S. Bengio, Neural combinatorial optimization with reinforcement learning. Preprint arXiv:1611.09940 (2016). [Google Scholar]
- E. Khalil, H. Dai, Y. Zhang, B. Dilkina and L. Song, Learning combinatorial optimization algorithms over graphs, in Advances in Neural Information Processing Systems. Vol. 30. (2017). [Google Scholar]
- A. Bogyrbayeva, M. Meraliyev, T. Mustakhov and B. Dauletbayev, Learning to solve vehicle routing problems: a survey. IEEE Trans. Intell. Transp. Syst. 25 (2024) 4754–4772. [Google Scholar]
- M. Nazari, A. Oroojlooy, L. Snyder and M. Takác, Reinforcement learning for solving the vehicle routing problem. Adv. Neural Inf. Process. Syst. 31 (2018). [Google Scholar]
- W. Kool, H. Van Hoof and M. Welling, Attention, learn to solve routing problems! Preprint arXiv:1803.08475 (2018). [Google Scholar]
- K. Zhang, F. He, Z. Zhang, X. Lin and M. Li, Multi-vehicle routing problems with soft time windows: a multi-agent reinforcement learning approach. Transp. Res. Part C: Emerg. Technol. 121 (2020) 102861. [Google Scholar]
- A. Bogyrbayeva, S. Jang, A. Shah, Y.J. Jang and C. Kwon, A reinforcement learning approach for rebalancing electric vehicle sharing systems. IEEE Trans. Intell. Transp. Syst. 23 (2021) 8704–8714. [Google Scholar]
- A. Bogyrbayeva, T. Yoon, H. Ko, S. Lim, H. Yun and C. Kwon, A deep reinforcement learning approach for solving the traveling salesman problem with drone. Transp. Res. Part C: Emerg. Technol. 148 (2023) 103981. [Google Scholar]
- M. Lai, M. Battarra, M. Di Francesco and P. Zuddas, An adaptive guidance meta-heuristic for the vehicle routing problem with splits and clustered backhauls. J. Oper. Res. Soc. 66 (2015) 1222–1235. [Google Scholar]
- H.T. Kahraman, S. Aras and E. Gedikli, Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms. Knowl.-Based Syst. 190 (2020) 105169. [Google Scholar]
- F.S. Gharehchopogh, An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems. J. Bionic Eng. 19 (2022) 1177–1202. [Google Scholar]
- B. Ozkaya, H.T. Kahraman, S. Duman and U. Guvenc, Fitness-distance-constraint (FDC) based guide selection method for constrained optimization problems. Appl. Soft Comput. 144 (2023) 110479. [Google Scholar]
- C. Yılmaz, E. Cengiz and H.T. Kahraman, A new evolutionary optimization algorithm with hybrid guidance mechanism for truck-multi drone delivery system. Expert Syst. Appl. 245 (2024) 123115. [Google Scholar]
- A. Engau and D. Sigler, Pareto solutions in multicriteria optimization under uncertainty. Eur. J. Oper. Res. 281 (2020) 357–368. [Google Scholar]
- S. Petchrompo, D.W. Coit, A. Brintrup, A. Wannakrairot and A.K. Parlikad, A review of pareto pruning methods for multi-objective optimization. Comput. Ind. Eng. 167 (2022) 108022. [Google Scholar]
- L.D.P. Pugliese, F. Guerriero and G. Macrina, Using drones for parcels delivery process. Proc. Manuf. 42 (2020) 488–497. [Google Scholar]
- L.C. Montanã, L. Malagon-Alvarado, P.A. Miranda, M.M. Arboleda, E.L. Solano-Charris and C.A. Vega-Mejía, A novel mathematical approach for the truck-and-drone location-routing problem. Proc. Comput. Sci. 200 (2022) 1378–1391. [Google Scholar]
- H. Duan, G. Zhang, S. Wang and Y. Fan, Integrated benefit-cost analysis of China’s optimal adaptation and targeted mitigation. Ecol. Econ. 160 (2019) 76–86. [Google Scholar]
- H. Duan, G. Zhang, S. Wang and Y. Fan, Robust climate change research: a review on multi-model analysis. Environ. Res. Lett. 14 (2019) 033001. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
