Issue |
RAIRO-Oper. Res.
Volume 35, Number 2, April June 2001
ROADEF'99
|
|
---|---|---|
Page(s) | 229 - 250 | |
DOI | https://doi.org/10.1051/ro:2001108 | |
Published online | 15 August 2002 |
Fast simulation for Road Traffic Network
1
ID-IMAG, 55 avenue Jean Kuntzmann, 38330 Montbonnot,
France. Research supported by the (CNRS – INRIA – INPG – UJF)
joint project , CAPES-COFECUB Agreement (Project 140/93),
Brazil and EC Transport RTD Program (Contract No. RO-97-SC-1005) joint project
.
2
ID-IMAG, 55 avenue Jean Kuntzmann, 38330 Montbonnot,
France. Research supported by the (CNRS – INRIA – INPG – UJF)
joint project and EC Transport RTD Program (Contract No. RO-97-SC-1005)
joint project .
3
North Carolina State University, Raleigh, NC 27695-8206,
U.S.A. Research supported in part by NSF (DDM-8906248 and CCR-9413309).
4
UFR Math-Info, 45 rue des Saints-Pères, 75270 Paris Cedex 06,
France. Research supported by EC Transport RTD Program (Contract No. RO-97-SC-1005) joint
project .
Received:
May
1999
In this paper we present a method to perform fast simulation of large Markovian systems. This method is based on the use of three concepts: Markov chain uniformization, event-driven dynamics, and modularity. An application of urban traffic simulation is presented to illustrate the performance of our approach.
Résumé
Dans cet article, nous présentons une méthode pour réaliser des simulations rapides de grands systèmes Markoviens. Cette méthode est basée sur l'utilisation de trois concepts : l'uniformisation de chaîne de Markov, une dynamique liée aux événements et la modularité. Une application de trafic urbain illustre les performances de notre approche.
Key words: Markov chains / stochastic automata networks / simulation / stochastic modeling.
© EDP Sciences, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.