Issue |
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
|
|
---|---|---|
Page(s) | 2093 - 2128 | |
DOI | https://doi.org/10.1051/ro/2021087 | |
Published online | 08 July 2021 |
A multi-objective multi-agent optimization algorithm for the multi-skill resource-constrained project scheduling problem with transfer times
Department of Industrial Engineering, Faculty of Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran.
* Corresponding author: V_baradaran@iau-tnb.ac.ir
Received:
5
September
2020
Accepted:
29
May
2021
This paper addresses the Multi-Skill Resource-Constrained Project Scheduling Problem with Transfer Times (MSRCPSP-TT). A new model has been developed that incorporates the presence of transfer times within the multi-skill RCPSP. The proposed model aims to minimize project’s duration and cost, concurrently. The MSRCPSP-TT is an NP-hard problem; therefore, a Multi-Objective Multi-Agent Optimization Algorithm (MOMAOA) is proposed to acquire feasible schedules. In the proposed algorithm, each agent represents a feasible solution that works with other agents in a grouped environment. The agents evolve due to their social, autonomous, and self-learning behaviors. Moreover, the adjustment of environment helps the evolution of agents as well. Since the MSRCPSP-TT is a multi-objective optimization problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used in different procedures of the MOMAOA. Another novelty of this paper is the application of TOPSIS in different procedures of the MOMAOA. These procedures are utilized for: (1) detecting the leader agent in each group, (2) detecting the global best leader agent, and (3) the global social behavior of the MOMAOA. The performance of the MOMAOA has been analyzed by solving several benchmark problems. The results of the MOMAOA have been validated through comparisons with three other meta-heuristics. The parameters of algorithms are determined by the Response Surface Methodology (RSM). The Kruskal–Wallis test is implemented to statistically analyze the efficiency of methods. Computational results reveal that the MOMAOA can beat the other three methods according to several testing metrics. Furthermore, the impact of transfer times on project’s duration and cost has been assessed. The investigations indicate that resource transfer times have significant impact on both objectives of the proposed model.
Mathematics Subject Classification: 90B35 / 91B32 / 68M20
Key words: Multi-agent systems / multi-objective optimization / multi-skill RCPSP / resource transfer times / TOPSIS
© The authors. Published by EDP Sciences, ROADEF, SMAI 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.