Free Access
Issue |
R.A.I.R.O. Recherche opérationnelle
Volume 7, Number V1, 1973
|
|
---|---|---|
Page(s) | 85 - 96 | |
DOI | https://doi.org/10.1051/ro/197307V100851 | |
Published online | 06 February 2017 |
- DOULLIEZ P. and RAO M. R., « Capacity of a Network with Increasing Demands and Arcs Subjects to Failure » Operations Research, 19 (4), 905-915 (1971). [Zbl: 0219.90047] [Google Scholar]
- L. R. FORD and D. R. FULKERSON, « Maximum Flow Through a Network »,Canadian Journal of Mathematics, 8 (May 1956), 399-404. [MR: 79251] [Zbl: 0073.40203] [Google Scholar]
- R. WOLLMER, « Removing Arcs from a Network », Operations Research, 12 (1964), 934-940. [MR: 171627] [Zbl: 0204.20102] [Google Scholar]
- G. de GHELLINCK, «Aspects de la notion de dualité en théorie des graphes», Cahiers du centre de recherche opérationnelle, 3, 2 (1961). [MR: 130838] [Zbl: 0135.42201] [Google Scholar]
- P. DOULLIEZ and M. R. RAO, « Maximal Flow in a Multiterminal Network with any One Arc Subject to Failure », Management Science, 18-1 (1971). [Zbl: 0234.90013] [Google Scholar]
- L. R. FORD and D. R. FULKERSON, « Flows in Networks », Princeton University Press, Princeton, New Jersey, 1962. [MR: 159700] [Zbl: 1216.05047] [Google Scholar]
- C. BERGE, Théorie des graphes et applications, Dunod, Paris, 1958, p. 209. [MR: 102822] [Zbl: 0121.40101] [Google Scholar]
- P. DOULLIEZ, « Optimal Capacity Planning of Multi-terminal Networks », Thèse de Doctorat, Université Catholique de Louvain, Louvain, Belgium, 1970. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.