Free Access
RAIRO-Oper. Res.
Volume 19, Number 3, 1985
Page(s) 209 - 219
Published online 06 February 2017
  • 1. M. ABROMOWITZ and I. A. STEGUN, Handbook of Mathematical Functions, New York, Dover, 1965. [Google Scholar]
  • 2. A. DE VANY, Uncertainty, Waiting Time, and Capadty Utilization: A Stochastic Theory of Product Quality, J. Polit. Econ., Vol. 84, June, 1976, pp. 523-541. [Google Scholar]
  • 3. A. DE VANY and T. R. SAVING, Product Quality, Uncertainty and Regulation: The Trucking Industry, Amer. Econ. Rev., Vol. 67, September, 1977, pp. 583-594. [Google Scholar]
  • 4. See, for example, D. GROSS and C. M. HARRIS, Fundamentals of Queueing Theory, New York, John Wiley and Sons, 1974. [MR: 370819] [Zbl: 0658.60122] [Google Scholar]
  • 5. L. KLEINROCK, Optimum Bribing for Queue Position, Operat. Res., Vol. 15, January/February 1967, pp. 304-318. [Zbl: 0149.13805] [Google Scholar]
  • 6. L. KLEINROCK, Queueing Systems Vol. II: Computer Applications, New York, Wiley-Interscience, 1976. [Zbl: 0870.60091] [Google Scholar]
  • 7. E. KOENIGSBERG, Uncertainty, Capacity and Market Share in Oligopoly: A Stochastic Theory of Product Quality, J. Business, The University of Chicago, 1980, Vol. 53, No. 2, pp. 151-164). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.