Free Access
Issue |
RAIRO-Oper. Res.
Volume 21, Number 4, 1987
|
|
---|---|---|
Page(s) | 349 - 364 | |
DOI | https://doi.org/10.1051/ro/1987210403491 | |
Published online | 06 February 2017 |
- BARNES E. R., An Algorithm for Partitioning the Nodes of a Graph, SIAM J. Alg. Discr. Meth. Vol. 4, 1982, pp. 541-550. [MR: 679649] [Zbl: 0505.05050] [Google Scholar]
- BENDERS J. F., Partitioning Procedures for solving mixed variables programming problems, Numerische Mathematik, Vol. 4, 1962, pp. 238-252. [EuDML: 131533] [MR: 147303] [Zbl: 0109.38302] [Google Scholar]
- CHRISTOFIDES N. and BROOKER P., The Optimal Partitioning of Graphs, SIAM J. Appl. Math. Vol. 30, No. 1, 1976, pp. 55-70. [MR: 405911] [Zbl: 0321.05123] [Google Scholar]
- DANTZIG G. B. and WOLFE P., The Decomposition Algorithm for Linear Programming, Econometrica, Vol. 29, No. 4, 1961, pp. 767, 778. [MR: 138506] [Zbl: 0104.14305] [Google Scholar]
- DINIC E. A., Algorithm for Solution of a Problem of Maximum Flow in a Network with Power Estimation, Soviet Math. Dokl., Vol. 11, 1970, pp. 1277-1280. [Zbl: 0219.90046] [Google Scholar]
- HAMMER P. L., HANSEN P. and SIMEONE B., Roof Duality, Complementation and Persistency in Quadratic 0-1 Optimization, Mathematical Programming, Vol. 28, 1984, pp. 121-155. [MR: 733206] [Zbl: 0574.90066] [Google Scholar]
- HANSEN P. and ROUCAIROL C., Problème de la bipartition minimale d'un graphe, RAIRO (à paraître). [Zbl: 0628.90049] [Google Scholar]
- HYAFIL L. and RIVEST R. L., Graph Partitioning and Constructing Optimal Decision Trees are Polynomial Complete Problems, Report n° 33, IRIA-Laboria, Rocquencourt, France, 1973. [Google Scholar]
- KARZANOV A. V., Determining the Maximal Flow in a Network by the Method of Preflows, Soviet Math. Dokl. Vol. 15, 1974, pp. 434-437. [Zbl: 0303.90014] [Google Scholar]
- LU S. M. and WILLIAMS A. C., Roof Duality for Nonlinear 0-1 Optimization, Rutcor Research Report, RRR 2-85, 1985. [Google Scholar]
- MINOUX M., Programmation Mathématique : théorie et algorithmes, Dunod, Paris, 1983 (English translation J. Wiley & Sons, 1986). [MR: 2571910] [Zbl: 0546.90056] [Google Scholar]
- MINOUX M. Optimal Traffic Assignaient in a SS/TDMS Frame: a New Approach by Set Covering and Column Generation, ORSA/TIMS meeting, Dallas, Texas, 1984, Appeared in RAIRO, Vol. 20, No. 4, 1986, pp. 1-13. [Zbl: 0608.90076] [Google Scholar]
- MINOUX M., A Class of Combinatorial Problems with Polynomially Solvable Large Scale set Covering/Partitioning Relaxations, Journées du 20e anniversaire du Groupe Combinatoire de l'AFCET, Paris-3, 5 décembre 1986, appeared in RAIRO, Vol. 21, No. 2, 1987, pp. 105-136. [EuDML: 104917] [MR: 897292] [Zbl: 0644.90061] [Google Scholar]
- RHYS J. M. W., A Selection Problem of Shared Fixed Costs and Network Flows, Management Science, Vol. 17, No. 3 (1970), pp. 200-207. [MR: 309537] [Zbl: 0203.52505] [Google Scholar]
- RIBEIRO C., MINOUX M. et PENNA C., A Combined Branch and Bound/Column generation Approach to very large Scale Set Covering Problems with Special Structure, ORSA/-TIMS meeting, Miami, Florida, November 1986, (to appear). [MR: 858854] [Google Scholar]
- ROSENBERG I. G., Reduction of Bivalent Maximization to the Quadratic Case, Cahiers du Centre d'Études de Recherche Opérationnelle, Vol. 17, 1975, pp.71-79. [MR: 378807] [Zbl: 0302.90041] [Google Scholar]
- TARJAN R. E., A Simple Version of Karzanov's Blocking Flow Algorithm, Operations Research Letters, Vol. 2, No. 6 (1984), pp. 265-268. [MR: 739677] [Zbl: 0542.05057] [Google Scholar]
- WILLAMS A. C., Quadratic 0-1 Programming Using the roof Dual with Computational Results, RUTCOR Research Report RRR8-85, 1985. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.