Free Access
Issue
RAIRO-Oper. Res.
Volume 22, Number 4, 1988
Page(s) 313 - 330
DOI https://doi.org/10.1051/ro/1988220403131
Published online 06 February 2017
  • 1. J. CHATELON D. HEARN and T. J. LOWE, A Subgradient Algorithm for Certain Minimax and Minisum Problems. The Constrained Case, S.I.A.M. Journal on Control and Qptimization, Vol. 20, 1982, pp. 455-469. [MR: 661026] [Zbl: 0498.49020] [Google Scholar]
  • 2. P. HANSEN, D. PEETERS and J. F. THISSE, Constrained Location and the Weber-Rawls Problem, Annals of Discrete Mathematics, Vol. 11, 1981, pp. 147-166. [MR: 653823] [Zbl: 0469.90027] [Google Scholar]
  • 3. P. HANSEN, D. PEETERS and J. F. THISSE, An Algorithm for Constrained Weber Problem, Management Science, Vol. 28, No. 11, 1982, pp. 1285-1295. [Zbl: 0512.90038] [Google Scholar]
  • 4. H. JUEL and R. F. LOVE, On the Dual of the Linearly Constrained Multifacility Location Problem with Arbitrary Norms, Transportation Science, Vol. 25, 1981, pp. 329-337. [MR: 638464] [Google Scholar]
  • 5. P. J. LAURENT, Approximation et Optimisation, Hermann, Paris, 1972. [MR: 467080] [Zbl: 0238.90058] [Google Scholar]
  • 6. O. LEFEBVRE and C. MICHELOT, Calcul d'un point fixe d'une application prox par la méthode des approximations successives; condition de convergence finie, Comptes rendus de l'Académie des Sciences de Paris, T. 303, série I, No. 17, 1986. [MR: 870918] [Zbl: 0607.65030] [Google Scholar]
  • 7. R. F. LOVE, Locating Facilities in Three-Dimensional Space by Convex Programming, Naval Research Logistics Quaterly, Vol. 16, 1969, pp. 503-516. [MR: 260430] [Zbl: 0194.20805] [Google Scholar]
  • 8. R. F. LOVE, The Dual of a Hyperbolic Approximation to the Generalized Constrained Multi-Facility Location Problem with lp Distances, Management Science, Vol. 21, No. 1, 1974, pp, 22-33. [MR: 439161] [Zbl: 0311.90062] [Google Scholar]
  • 9. R. F. LOVE and S. A. KRAEMER, A Dual Decomposition Method for Minimizing Transportation Costs in Multi-facility Location Problems, Transportation Science, Vol. 7, 1973, pp. 297-316. [MR: 343874] [Google Scholar]
  • 10. R. F. LOVE and J. G. MORRIS, Solving Constrained Multi-facility Location Problems Involving lp Distances Using Convex Programming, Operations Research, Vol. 23, 1975, pp. 581-587. [MR: 444034] [Zbl: 0311.90043] [Google Scholar]
  • 11. C. MICHELOT and O. LEFEBVRE, A Primal-dual Algorithm for the Fermat-Weber Problem Involving Mixed Gauges, Mathematical Programming, Vol. 39, 1987, pp. 319-335. [MR: 918873] [Zbl: 0641.90034] [Google Scholar]
  • 12. R. MIFFLIN, A Stable Method for Solving Certain Constrained Least Squares Problems, Mathematical Programming, Vol. 16, 1974, pp. 141-158. [MR: 527571] [Zbl: 0407.90065] [Google Scholar]
  • 13. J. G. MORRIS, A Linear Programming Solution to the Generalized Rectangular Distance Weber Problem, Naval Research Logistics Quaterly, Vol. 22, 1975, pp. 155-164. [MR: 384116] [Zbl: 0305.90063] [Google Scholar]
  • 14. R. T. ROCKAFELLAR, Convex Analysis, Princeton, New Jersey, Princeton University Press, 1970. [Zbl: 0932.90001] [Google Scholar]
  • 15. R. T. ROCKAFELLAR, Conjugate Duality and Optimization, Regional Conference Series in Applied Mathematics, S.I.A.M., 1974. [MR: 373611] [Zbl: 0296.90036] [Google Scholar]
  • 16. M. K. SCHAEFER and A. P. HURTER, An Algorithm for the Solution of a Location Problem with Metric Constraints, Naval Research Logistics Quaterly, Vol. 21, 1974, pp. 625-636. [MR: 363488] [Zbl: 0298.90063] [Google Scholar]
  • 17. J. E. SPINGARN, Partial Inverse of a Monotone Operator, Applied Mathematics and Optimization, Vol. 10, 1983, pp. 247-265. [MR: 722489] [Zbl: 0524.90072] [Google Scholar]
  • 18. C. D. T. WATSON-GANDY, The Solution of Distance Constrained Mini-Sum Location Problems, Operations Research, Vol. 33, 1985, pp. 784-802. [MR: 797886] [Zbl: 0569.90020] [Google Scholar]
  • 19. G. O. WESOLOWSKY and R. F. LOVE, The Optimal Location of New Facilities Using Rectangular Distances, Operations Research, Vol. 19, 1971, pp. 124-130. [MR: 384089] [Zbl: 0216.54102] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.