Free Access
Issue
RAIRO-Oper. Res.
Volume 24, Number 3, 1990
Page(s) 217 - 244
DOI https://doi.org/10.1051/ro/1990240302171
Published online 06 February 2017
  • Y. K. AGARWAL, K. MATHUR et M. SALKIN, A Set-Partitioning-Based Algorithm for the Vehicle Routing Problem, Networks, 1989, 19, p. 731-749. [MR: 1024512] [Zbl: 0682.90050] [Google Scholar]
  • E. BAKER, An Exact Algorithm for the Time Constrained Traveling Salesman Problem, Oper. Res., 1983, 31, p. 938-945. [Zbl: 0549.90072] [Google Scholar]
  • E. BAKER et J. SCHAFFER, Computational Experience with Branch Exchange for Vehicle Routing Problems with Time Window Constraints, Am. J. Math. Management Sc., 1986, 6, p. 261-300. [Zbl: 0629.90048] [Google Scholar]
  • M. BALL et M. MAGAZINE, The Design and Analysis of Heuristics, Networks, 1981,11, p. 215-219. [Google Scholar]
  • W. BELL, L. DALBERTO, M. FISHER, A. GREENFIELD, R. JAIKUMAR, P. KEDIA, R. MACK et P. PRUTZMAN, Improving the Distribution of Industrial Gases with an On line Computerized Routing and Scheduling Optimizer, Interfaces, 1983,13, p. 4-23. [Google Scholar]
  • M. BELLMORE et J. MALONE, Pathology of Traveling Salesman Problem, Oper.Res., 1971, 19, p. 278-307. [MR: 391976] [Zbl: 0219.90032] [Google Scholar]
  • J. F. BENDERS, Partitionning Procedures for Solving Mixed Variables Programming Problems, Numer. Math., 1962, 4, p. 238-252. [EuDML: 131533] [MR: 147303] [Zbl: 0109.38302] [Google Scholar]
  • D. P. BERTSEKAS, Constrained Optimisation and Lagrange Multipliers Methods, Academic Press, New York, 1982. [MR: 690767] [Zbl: 0572.90067] [Google Scholar]
  • L. BODIN, B. GOLDEN, A. ASSAD et M. BALL, Routing and Scheduling of Vehicles and Crews: the State of the Art, Comput. Oper. Res., 1983,10, p. 63-212. [MR: 758162] [Google Scholar]
  • N. CHRISTOFIDES, A. MINGOZZI, P. TOTH et C. SANDI, Combinatorial Optimisation, John Wiley, New York, 1979. [MR: 557004] [Zbl: 0401.00019] [Google Scholar]
  • N. CHRISTOFIDES, A. MINGOZZI et P. TOTH, Exact Algorithms for the Vehicle Routing Problems, Based on Spanning Tree and Shortest Path Relaxation, Math. Program. 1981a, 20, p. 255-282. [MR: 612623] [Zbl: 0461.90067] [Google Scholar]
  • N. CHRISTOFIDES, A. MINGOZZI et P. TOTH, State Space Relaxation Procedures for the Computation of Bounds to Routing Problems, Networks, 1981 b, 11, p. 145-164. [MR: 618211] [Zbl: 0458.90071] [Google Scholar]
  • G. CLARK et W. WRIGHT, Scheduling of Vehicles from a Central Depot to a Number of Delivery Points, Oper. Res., 1964,12, p. 568-581. [Google Scholar]
  • C. F. DAGANZO, The Length of Tours in Zones of Different Shapes, Transp. Res., 1984, 18 B, p. 135-145. [MR: 748297] [Google Scholar]
  • C. F. DAGANZO et G. F. NEWELL, Configuration of Physical Distribution Networks, Networks, 1986, 16, p. 113-132. [Zbl: 0642.90036] [Google Scholar]
  • C. F. DAGANZO, Modeling Distribution Problems with Time Windows, Part I, Sci., 1987 a, 21, p. 171-179. [Zbl: 0623.90034] [Google Scholar]
  • C. F. DAGANZO, Modeling Distribution Problems with Time Windows, Part II: Two Customer Types, Transp. Sci., 1987 b, 21, p. 180-187. [Zbl: 0623.90035] [Google Scholar]
  • M. DESROCHERS, La fabrication d'horaires de travail pour les conducteurs d'autobus par une méthode de génération de colonnes, Thèse de Ph. D, Dept. d'Informatique et de Recherche Opérationnelle, Université de Montréal, 1986. [Google Scholar]
  • M. DESROCHERS, J. MENSTRA, M. SAVELSBERGH et F. SOUMIS, Vehicle Routing with Time Windows: Optimization and Approximation, in Vehicle Routing Methods and Studies, B. GOLDEN et A. ASSAD éd., p. 65-84, North Holland, Amsterdam, 1988. [MR: 1017690] [Zbl: 0642.90055] [Google Scholar]
  • M. DESROCHERS et G. LAPORTE, Improvement and Extensions to the Miller-Tucker-Zemlin Subtour Elimination Constraints, Cahiers du GERAD G-89-03, École des H.E.C., Montréal, 1989. [Zbl: 0723.90081] [Google Scholar]
  • J. DESROSIERS, P. PELLETIER et F. SOUMIS, Plus courts chemin avec contraintes d'horaires, R.A.I.R.O., Rech. Op., 1983, 17, p. 1-21. [EuDML: 104840] [Zbl: 0528.90082] [Google Scholar]
  • J. DESROSIERS, F. SOUMIS et M. DESROCHERS, Routing with Time Windows by Column Generation, Networks, 1984, 14, p. 545-565. [Zbl: 0571.90088] [Google Scholar]
  • J. DESROSIERS, F. SOUMIS, M. DESROCHERS et M. SAUVÉ, Routing and Scheduling with Time Windows Solved by Network Relaxation and Branch and Bound on Time Variables, in J. M. ROUSSEAU éd., Computer Scheduling of Public Transport, II, North Holland, Amsterdam, 1985. [Zbl: 0585.90067] [Google Scholar]
  • J. DESROSIERS, F. SOUMIS, M. DESROCHERS et M. SAUVÉ, Methods for Routing with Time Windows, Eur. J. Oper. Res., 1986, 23, p. 236-245. [MR: 825610] [Zbl: 0579.90095] [Google Scholar]
  • J. DESROSIERS, M. SAUVÉ, et F. SOUMIS, Lagrangean Relaxation Methods for Solving the Minimum Fleet Size Multiple Traveling Salesman Problem with Time Windows, Manage. Sc., 1988, 34, p. 1005-1022. [MR: 954130] [Zbl: 0654.90038] [Google Scholar]
  • J. DESROSIERS, M. DESROCHERS et M. SOLOMON, A Column Generation Algorithm for the Vehicle Routing Problem with Time Windows. Présenté au congrès CORS/TIMS/ORSA, Vancouver, mai 1989. [Zbl: 0825.90360] [Google Scholar]
  • G. FINKE, A. CLAUSS et E. GUNN, A Two Commodity Network Flow Approach to the Traveling Salesman Problem, Congressus Numerantium, 1984, p. 167-178. [MR: 749611] [Zbl: 0697.90056] [Google Scholar]
  • M. L. FISHER et R. JAIKUMAR, A Decomposition Algorithm for Large Scale Vehicle Routing. Working paper 78-11-05, Dept. of Decision Science, University of Pennsylvania, 1978. [Google Scholar]
  • M. L. FISHER, Worst Case Analysis of Algorithms, Manage. Sci., 1980, 26, p. 1-17. [MR: 574193] [Zbl: 0448.90041] [Google Scholar]
  • M. L. FISHER, The Lagrangean Relaxation Method for Solving Integer Programming Problems. Manage. Sci., 1981, 37, p. 1-12. [MR: 720492] [Zbl: 0466.90054] [Google Scholar]
  • M. L. FISHER et R. JAIKUMAR, A Generalized Assignement Heuristic for Vehicle Routing, Networks, 1981, 11, p. 109-124. [MR: 618209] [Google Scholar]
  • M. L. FISHER, Lagrangian Optimization Algorithms for Vehicle Routing Problems, in Operational Research '87, Proceedings of the Eleventh International Conference on Operational Research, G. K. RAND éd., North Holland, Amsterdam, 1987. [MR: 1002769] [Zbl: 0663.90040] [Google Scholar]
  • M. L. FISHER et A. H. G. RINOOY KAN, The Design, Analysis and Implementation of Heuristics, Manage. Sci., 1988, 34, p. 263-265. [MR: 938764] [Google Scholar]
  • B. A. FOSTER et D. M. RYAN, An Integer Programming Approach to the Vehicle Scheduling Problem, Oper. Res. Quart., 19876, 27, p. 367-384. [MR: 489825] [Zbl: 0327.90030] [Google Scholar]
  • M. FRANK et P. WOLFE, An Algorithm for Quadratic Programming, Nav. Res. Log.Quart., 1956, 3, p. 95-110. [MR: 89102] [Google Scholar]
  • A. M. GEOFFRION, Lagrangean Relaxation and its Uses in Integer Programming, Math. Program. Stud, 1974, p. 82-114. [MR: 439172] [Zbl: 0395.90056] [Google Scholar]
  • I. GERTSBAKH et H. STERN, Minimal Ressources for Fixed and Variable Job Schedule, Oper. Res., 1978, p. 68-85. [MR: 475806] [Zbl: 0371.90058] [Google Scholar]
  • B. GILLETT et L. MILLER, A Heuristic Algorithm for the Vehicle Dispatching Problem, Oper. Res., 1974, 22, p. 340-349. [Zbl: 0274.90013] [Google Scholar]
  • B. GOLDEN et A. ASSAD éd., Vehicle Routing: Methods and Studies, North Holland, Amsterdam, 1988. [MR: 1017687] [Zbl: 0638.00043] [Google Scholar]
  • M. GUIGNARD et S. KIM, Langrangean Decomposition for Integer Programming: Theory and Applications, R.A.I.R.O., Rech. Oper., 1987, 21, p. 307-323. [EuDML: 104926] [MR: 932182] [Zbl: 0638.90075] [Google Scholar]
  • M. HAOUARI, P. DEJAX et F. SOUMIS, Étude de la complexité du problème du plus court chemin avec contraintes de fenêtres de temps, Rapport Scientifique L.E.I.S., École Centrale, Paris, 1988. [Google Scholar]
  • M. HAOUARI et P. DEJAX, Un modèle de tournées de véhicules avec contraintes de capacité et de fenêtres de temps, in Actes du 2e Congrès International de Génie industriel, p. 181-190, Nancy, Groupement de Génie Industriel, C.E.F.I. éd., 1988. [Google Scholar]
  • M. HAOUARI et P. DEJAX, An Exact Algorithm for Vehicle Routing with Time Windows, présenté au Congrès CORS/TIMS/ORSA, Vancouver, mai 1989 a. [Google Scholar]
  • M. HAOUARI, F. BERGEAUD, P. DEJAX et M. TEKAYA, Une heuristique parallèle pour les problèmes de tournées avec fenêtres de temps in Actes du Colloque sur le développement des Sciences et Pratiques de l'organisation, p. 159-166, A.F.C.E.T., Paris, décembre 1989 b. [Google Scholar]
  • K. JÖRNSTEN, M. NASBERG et P. SMEDS, Variable Splitting, a New Lagrangean Approach to some Mathematical Programming Models, Linkoping Institute of Technology, Dept of Mathematics, Report LITH-MAT 85-04, 1985. [Google Scholar]
  • K. JÖRNSTEN, O. MADSEN et B. SORENSEN, Exact Solution of the Vehicle Routing and Scheduling Problem with Time Windows by Splitting, Research Report No. 5/1986, I.M.S.O.R., The Technical University of Denmark, 1986. [Google Scholar]
  • G. KEYMOLEN, Les problèmes de tournées: un algorithme pour le cas monovéhicules avec restrictions temporelles et de précédence, Thèse de Doctorat, Université catholique de Louvain, 1988. [Google Scholar]
  • K. KNIGHT et J. HOFER, Vehicle Scheduling with Timed and Connected Calls: A case Study, Oper. Res. Quart., 1968, 19, p. 299-310. [Google Scholar]
  • A. KOLEN, A. RINOOY KAN et M. TRIENEKENS, Vehicle Routing with Time Windows, Oper. Res., 1987, 35, p. 266-273. [MR: 907422] [Zbl: 0636.90047] [Google Scholar]
  • Y. A. KOSKOSIDIS, W. B. POWELL et M. M. SOLOMON, An Optimization Based Heuristic for Vehicle Routing and Scheduling with Time Window Constraints, T.M.S. 88-09-1, The Institute for Transportation Systems, 1989. [Zbl: 0762.90022] [Google Scholar]
  • A. LANGEVIN, Planification des tournées de véhicules, Thèse de Ph. D, École Polytecthnique de Montréal, Université de Montréal, 1988. [Google Scholar]
  • G. LAPORTE et Y. NOBERT, Exact Algorithms for the Vehicle Routing Problem, Ann. Discr. Math. 1987, 31, p. 147-184. [MR: 878778] [Zbl: 0611.90055] [Google Scholar]
  • L. S. LASDON, Optimization Theory for Large Systems, The Macmillan Company, London, 1970. [MR: 337317] [Zbl: 0224.90038] [Google Scholar]
  • E. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN et D. SHMOYS, The Traveling Salesman Problem, John Wiley, New York, 1985. [MR: 811467] [Zbl: 0562.00014] [Google Scholar]
  • A. LEVIN, Scheduling and Fleet Routing Models for Transportation Systems, Transp.Sc., 1971, 5, p. 232-255. [MR: 293994] [Google Scholar]
  • S. LIN, Computer Solutions to the Traveling Salesman Problem, Bell Syst. Tech. J., 1965, 44, p. 2245-2269. [MR: 189224] [Zbl: 0136.14705] [Google Scholar]
  • S. LIN et B. KERNIGHAN, An Effective Heuristic for the Traveling Salesman Problem, Oper. Res., 1973, 21, p. 498-516. [MR: 359742] [Zbl: 0256.90038] [Google Scholar]
  • T. L. MAGNANTI, Combinatorial Optimisation and Vehicle Fleet Planning: Perspectives and Prospects, Networks, 1981, 11, p. 179-213. [MR: 618212] [Google Scholar]
  • C. MILLER, A. TUCKER et R. ZEMLIN, Integer Programming Formulation of Traveling Salesman Problem, J. Assoc. Comput. Mach., 1960, 7, p. 326-332. [MR: 149964] [Zbl: 0100.15101] [Google Scholar]
  • M. MINOUX, Lagrangian Relaxation of the Constrained Shortetst Path Problem, papier non publié, 1982. [Google Scholar]
  • M. MINOUX, Problèmes de grandes dimensiions, in Programmation Mathématique, tome 2, Dunod, Paris, 1983. [Google Scholar]
  • R. MOLE et S. JAMESON, A sequential Route Building Algorithm Employing a Generalized Savings Criteria, Oper. Res. Quart., 1976, p. 503-511. [Google Scholar]
  • G. F. NEWELL et C. F. DAGANZO, Design of Multiple Vehicles Tours. I: A Ring Radial Network, Transp. Res., 1986 a, 20 B, p. 345-363. [Google Scholar]
  • G. F. NEWELL et C. F. DAGANZO, Design of Multiple Vehicles Tours. II: Other Metrics, Transp. Res., 1986 b, 20 B, p. 365-376. [Google Scholar]
  • G. F. NEWELL et C. F. DAGANZO, Design of Multiple Vehicle Tours. III: Valuable Goods, Transp. Res., 1986 c, 20 B, p. 377-390. [Google Scholar]
  • I. OR, Traveling Salesman Type Combinatorial Problems and their Relation to the Logistics of Blood Banking, Ph. D Thesis, Dept. of Industrial Engineering and Management Sciences, Northwestern University, 1976. [Google Scholar]
  • C. ORLOFF, Route Constrained Fleet Routing, Transp. Sci., 1976, 10, p. 149-168. [Google Scholar]
  • G. PARKER, R. DEANE et R. HOLMES, On the Use of a Vehicle Routing Algorithm for the Parallel Processor Problem with Sequence Dependent Changeover Costs. A.I.I.E. T., 1977, 9, p. 155-160. [Google Scholar]
  • H. PULLEN et M. WEBB, A Computer application to a Transport Scheduling Problem, Comput. J., 1967, 10 p. 10-13. [Google Scholar]
  • M. R. RAO et S. ZIONTS, Allocation of Transportation Units to Alternative Trips. A Column Generation Scheme with Out of Kilter Subproblems, Oper. Res., 1968, 16, p. 52-63. [Google Scholar]
  • C. RIBEIRO, M. MINOUX et M. PENNA, An Optimal Column Generation with Ranking Algoritm for very Large Scale Set Partitionning Problems in Traffic Assignement, Eur. J. Oper. Res., 1989, 41, p. 232-239. [MR: 1010320] [Zbl: 0679.90043] [Google Scholar]
  • B. SANSO, F. SOUMIS et M. GENDREAU, Routing Models and Applications in Telecommunications Networks, présenté au Congrès EURO IX TIMS XXVIII, Paris, 1988. [Google Scholar]
  • M. SAVELSBERGH, Local Search in Routing Problems with Time Windows, Ann. Oper. Res., 1985, 4, p. 285-305. [MR: 948021] [Google Scholar]
  • M. SAVELSBERGH, The Generalized Assignement Heuristic Revisited, présenté au congrès CORS/TIMS/ORSA, Vancouver, mai 1989. [Google Scholar]
  • M. SOLOMON, On the Worst Case Performance of some Heuristics for the Vehicle Routing Scheduling Problem with Time Window constraints, Networks, 1986, 16, p. 161-174. [MR: 835635] [Zbl: 0642.90058] [Google Scholar]
  • M. SOLOMON, Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints, Oper. Res., 1987, 35, p. 254-265. [MR: 907421] [Zbl: 0625.90047] [Google Scholar]
  • M. SOLOMON et J. DESROSIERS, Time Window Constrained Routing and Scheduling Problems, Transp. Sci., 1988 a, 22, p. 1-13. [MR: 929021] [Zbl: 0638.90052] [Google Scholar]
  • M. SOLOMON, E. BAKER et J. SCHAFFER, Vehicle Routing and Scheduling problems with Time Window Constraints: Efficient Implementations of Solutions Improvement Procedures, in Vehicle Routing Methhods and Studies, B. GOLDEN et A. ASSAD éd., p. 85-105, North Holland, Amsterdam, 1988 b. [MR: 1017691] [Zbl: 0642.90054] [Google Scholar]
  • A. J. SWERSEY et W. BALLARD, Scheduling School Buses, Manage. Sci., 1984, 30, p. 844-853. [Zbl: 0547.90043] [Google Scholar]
  • P. M. THOMPSON et H. N. PSARAFTIS, Cyclic Transfer Algorithms for Multi-Vehicle Routing and Scheduling Problems. W.P. 89-008, Leavey School of Business and Administration, Santa Clara University, 1989. [Zbl: 0797.90021] [Google Scholar]
  • VAN LANDEGHAM, A Bi-criteria Heuristic for the Vehicle Routing Problem with Time Windows, Eur. J. Oper. Res., 1988, 36, p. 217-266. [Zbl: 0643.90035] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.