Free Access
Issue
RAIRO-Oper. Res.
Volume 26, Number 1, 1992
Page(s) 57 - 81
DOI https://doi.org/10.1051/ro/1992260100571
Published online 06 February 2017
  • 1. S. KIRPATRICK, C.D. GELATT et M.P. VECCHI, Optimization by Simulated Annealing, Science, 1983, 220, p. 671-680. [Zbl: 1225.90162] [MR: 702485]
  • 2. E. BONOMI, J.L. LUTTON, The N-city Travelling Salesman Problem:Statistical Mechanics and Metropolis algorithm, S.I.A.M. Rev., 1984, 26, 4, p. 551-568. [MR: 765672] [Zbl: 0551.90095]
  • 3. J.J. HOPFIELD et D.W. TANK, Neural Computation of Decisions in Optimization Problems, Biol. Cybernet. 1985, 52, p. 141-152. [MR: 824597] [Zbl: 0572.68041]
  • 4. R. DURBIN et D. WILLSHAW, An Analogue Approach to the Travelling Salesman Problem Using an Elastic Net Method, Nature, 1987, 326, p. 689-691.
  • 5. B. ANGÉNIOL, G. DE LA CROIX VAUBOIS et J. Y. LETEXIER, Self Organizing Feature Mapsand the Traveling Salesman Problem, Neural Networks, 1988, 1, p. 289-293.
  • 6. M. MÉZARD, G. PARISIet M. A. VIRASORO, Spin Glass Theory and Beyond, World Sci. Lecture Notes Phys., 1987, 9. [MR: 1026102] [Zbl: 0992.82500]
  • 7. D. S. JOHNSON, More Approaches to the Travelling Salesman Guide, Nature, 1987, 330, p. 525
  • 8. S. LIN et B.W. KERNINGHAN, An Effective Heuristic Algorithm for the Traveling-Salesman Problem, Oper. Res., 1973, 21, p. 498-516. [MR: 359742] [Zbl: 0256.90038]
  • 9. D.S. JOHNSON, Local Optimization and the Traveling Salesman Problem, Proceedings of the 17th Colloquium on Automat a Languages and Programming, Springer-Verlag, NewYork, 1990, p. 446-461. [MR: 1076835] [Zbl: 0766.90079]
  • 10. D.L. MILLER et J.F. PEKNY, Exact Solution of Large Asymmetric Traveling Salesman Problems, Science, 1991, 251, p. 754-761.
  • 11. (a)M. PADBERG et G. RINALDI, Optimization of a 532 City Symmetric Travelling Salesman Problem, 1986, Actes des « Journées du 20e anniversaire du groupe combinatoire de l'A.F.C.E.T.», I.N.R.I.A. -Rocquencourt, 1986, p.387-403;
  • (b) M. PADBERG et G. RINALDI, Optimization of a 532 City Symmetric Travelling Salesman Problem by Branch and Cut, Oper. Res. Lett., 1987, 6, p. 1-7. [MR: 891600] [Zbl: 0618.90082]
  • 12. D.G. BOUNDS, New Optimization Methods from Physics and Biology, Nature, 1987, 329, p. 215-219.
  • 13. F. FOGELMANSOULIE et P. GALLINARI, Méthodes connexionistes d'apprentissage, École Internationale d'Informatique, A.F.C.E.T., Brest, 1989.
  • 14. J. BEARDWOOD, J.H. HALTONet J.M. HAMMERSLEY, The Shortest Path Through Many Points, Proceedings of the Cambridge Philosophical Society, 1959, 55 p. 299-327. [MR: 109316] [Zbl: 0118.35601]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.