Free Access
Issue |
RAIRO-Oper. Res.
Volume 26, Number 1, 1992
|
|
---|---|---|
Page(s) | 41 - 55 | |
DOI | https://doi.org/10.1051/ro/1992260100411 | |
Published online | 06 February 2017 |
- 1. B. BASSAN, E. ÇINLAR and M. SCARSINI, Stochastic Comparison of Semimartingale Hunt Processes, 1989 (unpublished manuscript). [Google Scholar]
- 2. Y. L. DENG, On the Comparison of Point Processes, J. Appl. Probab., 1985 a, 22, pp. 300-313. [MR: 789354] [Zbl: 0566.60047] [Google Scholar]
- 3. Y. L. DENG, Comparison of Inhomogeneous Poisson Processes, Chinese Ann. Math., 1985 b, Ser. 6B, pp. 83-96. [MR: 795706] [Zbl: 0558.60041] [Google Scholar]
- 4. L. I. GAL'CHUK, A Comparison Theorem for Stochastic Equations with Integrals with Respect to Martingales and Random Measures, Theory Probab. Appl., 1982, 27, pp. 450-460. [MR: 673916] [Zbl: 0516.60074] [Google Scholar]
- 5. H. U. GERBER, An Introduction to Mathematical Risk Theory, Heubner, Philadelphia, 1979. [MR: 579350] [Zbl: 0431.62066] [Google Scholar]
- 6. J. GRANDELL, Aspects of Risk Theory, Springer Verlag, New York, 1991. [MR: 1084370] [Zbl: 0717.62100] [Google Scholar]
- 7. T. KAMAE, U. KRENGEL and G. L. O'BRIEN, Stochastic Inequalities on Partially Ordered Space, Ann. Probab., 1977, 5, pp. 899-912. [MR: 494447] [Zbl: 0371.60013] [Google Scholar]
- 8. D. R. MILLER, Almost Sure Comparison of Renewal Processes and Poisson Processe, with Application to Reliability Theory, Math. Oper. Res., 1979, 4 pp. 406-413. [MR: 549126] [Zbl: 0418.60087] [Google Scholar]
- 9. T. ROLSKI and R. SZEKLI, Stochastic Ordering and Thinning of Point Processe, Mathematical Institute, University of Wroclaw, 1989. [Zbl: 0734.60050] [Google Scholar]
- 10. W. WHITT, Comparing Counting Processes and Queues, Ad. in Appl. Probab., 1981, 13, pp. 207-220. [MR: 595895] [Zbl: 0449.60064] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.