Free Access
Issue
RAIRO-Oper. Res.
Volume 26, Number 3, 1992
Page(s) 209 - 236
DOI https://doi.org/10.1051/ro/1992260302091
Published online 06 February 2017
  • 1. D. P. BERTSEKAS, Projected Newton Methods for Optimization Problems with Simple Constraints, S.I.A.M. J. Control Optim., 1982, 20, pp. 221-246. [MR: 646950] [Zbl: 0507.49018] [Google Scholar]
  • 2. M. J. BEST and K. RITTER, An Effective Algorithm for Quadratic Minimization Problems, M.R.C. Tech Rep 1691, Mathematics Research Center, University of Wisconsin-Madison, 1976. [Google Scholar]
  • 3. A. BJORCK, A Direct Method for Sparse Least-Squares Problems with Lower and Upper Bounds, Departament of Mathematics, Linköping University, Linköping, Sweden, 1987. [Zbl: 0659.65039] [Google Scholar]
  • 4. P. H. CALAMAI, and J. J. MORÉ, Projected Gradient Methods for Linearly Constrained Problems, Math. Programming, 1987, 39, pp. 93-116. [MR: 909010] [Zbl: 0634.90064] [Google Scholar]
  • 5. J. CEA and R. GLOWINSKI, Sur des Méthodes d'optimisation par relaxation, R.A.I.R.O., 1983, R-3, pp. 5-32. [Zbl: 0279.90033] [Google Scholar]
  • 6. R. S. DEMBO and U. TULOWITZKI, On the Minimization of Quadratic Functions Subject to Box Constraints, Working Paper Series B71, School of Organization and Management, Yale University, New Haven, 1987. [Google Scholar]
  • 7. J. E. DENNIS and R. S. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, NJ, 1983. [MR: 702023] [Zbl: 0579.65058] [Google Scholar]
  • 8. R. FLETCHER, Practical Methods of Optimization, 2nd Edition, Wiley, 1987. [MR: 955799] [Zbl: 0474.65043] [Google Scholar]
  • 9. A. FRIEDLANDER, C. LYRA, H. TAVARES and E. L. MEDINA, Optimizaton with S tair-Case Structure: an Application to Generation Scheduling, Comput. Oper. Res., 1990, 17, pp. 143-152. [MR: 1035839] [Zbl: 0687.90089] [Google Scholar]
  • 10. A. FRIEDLANDER and J. M. MARTINEZ, On the Numerical Solution of Bound Constrained Optimization Problems, R.A.I.R.O. Oper. Res., 1989, 23, pp. 319-341. [EuDML: 104967] [MR: 1036699] [Zbl: 0683.90073] [Google Scholar]
  • 11. P. E. GILL and W. MURRAY, Minimization Subject to Bounds on the Variables, N.P.L. report NAC 72, National Physical Laboratory, Teddington, 1976. [Google Scholar]
  • 12. P. E. GILL and W. MURRAY, Numerically Stable Methods for Quadratic Programming, Math. Programming, 1978, 14, pp. 349-372. [MR: 484411] [Zbl: 0374.90054] [Google Scholar]
  • 13. P. E. GILL, W. MURRAY and M. WRIGHT, Practical Optimization, Academic Press, London, New York, 1981. [MR: 634376] [Zbl: 0503.90062] [Google Scholar]
  • 14. R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984. [MR: 737005] [Zbl: 1139.65050] [Google Scholar]
  • 15. A. A. GOLDSTEIN, Convex Programming in Hubert Space, Bull. Amer. Math. Soc., 1964, 70, pp. 709-710. [MR: 165982] [Zbl: 0142.17101] [Google Scholar]
  • 16. H. S. GOMES and J. M. MARTÍNEZ, A Numerically Stable Reduced-Gradient Type Algorithm for Solving Large-Scale Linearly Constrained Minimization Problems, Comput. Oper. Res., 1991, 18, pp. 17-31. [MR: 1077662] [Zbl: 0717.90069] [Google Scholar]
  • 17. G. H. GOLUB and C. F. VAN LOAN, Matrix Computations, The Johns Hopkins, University Press, Baltimore, 1983. [MR: 733103] [Zbl: 0733.65016] [Google Scholar]
  • 18. G. T. HERMAN, Image Reconstruction from Projections: The Fundamental of Computerized Tomography, Academic Press, New York, 1980. [MR: 630896] [Zbl: 0538.92005] [Google Scholar]
  • 19. E. S. LEVITIN and B. T. POLYAK, Constrained Minimization Problems, U.S.S.R. Comput. Math.-Math. Phys., 1966, 6, pp. 1-50. [Google Scholar]
  • 20. P. LÓTSTEDT, Solving the Minimal Least Squares Problems Subject to Bounds on the Variables, B.I.T., 1984, 24, pp. 206-224. [MR: 753549] [Zbl: 0546.65041] [Google Scholar]
  • 21. C. LYRA, A. FRIEDLANDER and J. C. GEROMEL, Coordenação da operação energética no médio São Francisco por um método de gradiente reduzido, Mat. Apl. Comput., 1982, 1, pp. 107-120. [Google Scholar]
  • 22. J. J. MORÉ, Numerical solution of bound constrained problems, A.N.L./M.C.S.-TM-96, Math. and Comp. Sci. Div., Argonne National Laboratory, Argonne, Illinois, 1987. [MR: 951428] [Zbl: 0655.65086] [Google Scholar]
  • 23. J. J. MORÉ and G. TORALDO, Algorithms for Bound Constrained Quadratic Programming Problems, Numer. Math., 1989, 55, pp. 377-400. [EuDML: 133360] [MR: 997229] [Zbl: 0675.65061] [Google Scholar]
  • 24. J. J. MORÉ and G. TORALDO, On the solution of Large Quadratic Programming Problems with Bound Constraints, S.I.A.M. J. Optim., 1991, 7, pp.93-113. [MR: 1094793] [Zbl: 0752.90053] [Google Scholar]
  • 25. B. A. MURTAGH and M. A. SAUNDERS, Large-Scale Linearly Constrained Optimization, Math. Programming, 1978, 14, pp. 41-72. [MR: 462607] [Zbl: 0383.90074] [Google Scholar]
  • 26. R. H. NICKEL and J. W. TOLLE, A Sparse Sequential Quadratic Programming Algorithm, J.O.T.A., 1989, 60, pp. 453-473. [MR: 993010] [Zbl: 0632.90053] [Google Scholar]
  • 27. D. P. O'LEARY, A Generalized Conjugate Gradient Algorithm for Solving a Class of Quadratic Programming Problems, Linear Algebra Appl., 1980, 34, pp. 371-399. [MR: 591439] [Zbl: 0464.65039] [Google Scholar]
  • 28. B. T. POLYAK, The Conjugate Gradient Method in Extremal Problems, U.S.S.R.Comput. Math. and Math. Phys., 1969, 9, pp. 94-112 [Zbl: 0229.49023] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.