Free Access
Issue
RAIRO-Oper. Res.
Volume 26, Number 3, 1992
Page(s) 237 - 267
DOI https://doi.org/10.1051/ro/1992260302371
Published online 06 February 2017
  • 1. J. ABADIE et J. CARPENTIER, Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, In Optimization, R. FLETCHER ed., London Academic, 1969. [MR: 284206] [Zbl: 0254.90049] [Google Scholar]
  • 2. A. BIHAIN, V. H. NGUYEN et J. J. STRODIOT, A Reduced Subgradient Algorithm, Math. Programming Study, 1987, 30, pp. 127-149. [MR: 874135] [Zbl: 0624.90085] [Google Scholar]
  • 3. A. BIHAIN, Numerical and Algorithmic Contributions to the Constrained Optimization of Some Classes of Non-Differentiable Functions, Ph. D. Thesis, F.U.N.D.P., Namur, Belgium, 1984. [Zbl: 0534.90069] [Google Scholar]
  • 4. E. K. BLUM, Numerical Analysis and Computation, Theory and Practice, Addison-Wesley, New York, 1972. [MR: 408185] [Zbl: 0273.65001] [Google Scholar]
  • 5. J. A. CHATELON, D. W. HEARN et J. J. LOWE, A Subgradient Algorithm for Certain Minimax and Minisum Problems, S.I.A.M., J. Control Optim., S.I.A.M., J. Control Optim., 1982,20, pp. 455-469. [MR: 661026] [Zbl: 0498.49020] [Google Scholar]
  • 6. M. GAUDIOSO et M. F. MONACO, A Bundle Type Approach to the Unconstrained Minimization of Convex Nonsmooth Functions, Math. Programming, 1982, 23, pp. 216-226. [MR: 657081] [Zbl: 0479.90066] [Google Scholar]
  • 7. W. GOCHET et Y SMEERS, A Modified Reduced Gradient Method for a Class of Nondifferentiable Problems, Math. Programming, 1980, 19, pp. 137-154. [MR: 583275] [Zbl: 0454.90058] [Google Scholar]
  • 8. P. HUARD, Convergence of the Reduced Gradient Method, In Nonlinear Programming, O. L. MANGASARIAN, R. R. MEYER et S. M. ROBINSON, éd., Academic Press, New York, 1975, 2, pp. 29-54. [MR: 421678] [Zbl: 0323.90046] [Google Scholar]
  • 9. P. HUARD, Un algorithme général de gradient réduit, Bulletin de la Direction des Études et Recherches, E.D.F., 1980, Série C, 2, pp. 91-109. [MR: 700427] [Zbl: 0582.65052] [Google Scholar]
  • 10. C. LEMARÉCHAL et R. MIFFLIN, Nonsmooth optimization, Pergamon Press, New York, 1977. [MR: 537890] [Zbl: 0391.00019] [Google Scholar]
  • 11. C. LEMARÉCHAL, Extensions diverses des méthodes de gradients et applications, Thèse d'État, Paris-IX Dauphine, Paris, 1980. [Google Scholar]
  • 12. C. LEMARÉCHAL, An Extension of Davidon Methods to Non-Differentiable Problems, Math. Programming Study, 1975, 3, pp. 95-109. [MR: 436586] [Zbl: 0358.90051] [Google Scholar]
  • 13. C. LEMARÉCHAL, J. J. STRODIOTet A. BIHAIN, On a Bundle Algorithm for Nonsmooth Optimization, In Nonlinear Programming, O. L. MANGASARIAN, R. R.MEYER et S. M. ROBINSON éd., Academic Press, New York, 1981, 4, pp. 245-282. [MR: 663383] [Zbl: 0533.49023] [Google Scholar]
  • 14. C. LEMARÉCHAL A View of Line Search, In Lecture Notes in Control and Information Science A. AUSLENDER, W. OETTLLI et J. STOER, éd., Springer, Berlin, 1981. [MR: 618474] [Zbl: 0458.65054] [Google Scholar]
  • 15. D. G. LUENBERGER, Introduction to Linear and Nonlinear Programming, Academic Press, New York, 1973. [Zbl: 0297.90044] [Google Scholar]
  • 16. R. MIFFLIN A Stable Method for Solving Certain Constrained Least Squares Problems, Math. Programming, 1979, 16, pp. 141-158. [MR: 527571] [Zbl: 0407.90065] [Google Scholar]
  • 17. R. MIFFLIN An Algorithm for Constrained Optimization with Semi Smooth Functions, Math. Oper. Res., 1977, 2, pp. 191-207. [MR: 474815] [Zbl: 0395.90069] [Google Scholar]
  • 18. R. MIFFLIN, Convergence of a Modification of Lemaréchal's Algorithm for non Smooth Optimization, In Progress in non differentiable Optimization, E. A.Nurminski ed., I.I.A.S.A., Laxenburg, Austria, 1982. [Zbl: 0502.65039] [Google Scholar]
  • 19. H. MOKHTAR-KHARROUBI, Sur la convergence théorique de la méthode du gradient réduit généralisé, Numer. Math., 1980, 34, pp. 73-85. [EuDML: 132660] [MR: 560795] [Zbl: 0414.65037] [Google Scholar]
  • 20. H. MOKHTAR-KHARROUBI, Sur quelques méthodes de gradient réduit sous contraintes linéaires, R.A.I.R.O., Anal. Numér., 1979, 13, n° 2, pp. 167-180. [EuDML: 193338] [MR: 533880] [Zbl: 0409.90075] [Google Scholar]
  • 21. Y. SMEERS, Generalized Reduced Gradient Method as an Extension of Feasible Directions Methods, J. Optim. Theory Appl., 1977, 22, n° 2, pp. 209-226. [MR: 452705] [Zbl: 0336.65035] [Google Scholar]
  • 22. J. J. STRODIOT, V. H. NGUYEN et N. HEUKEMES, ε-Optimal Solutions in non Differentiable Convex Programming and some Related Questions, Math. Programming, 1983, 25, pp. 307-328. [MR: 689660] [Zbl: 0495.90067] [Google Scholar]
  • 23. P. WOLFE, Reduced Gradient Method, Rand Document, June 1962. [Google Scholar]
  • 24. P. WOLFE, On the Convergence of Gradient Methods under Constraints, I.B.M. Journal, 1972, pp. 407-411. [MR: 331177] [Zbl: 0265.90046] [Google Scholar]
  • 25. P. WOLFE, Convergence Conditions for Ascent Methods, S.I.A.M. Review, 1969,11, pp. 226-234. [MR: 250453] [Zbl: 0177.20603] [Google Scholar]
  • 26. P. WOLFE, A Method for Conjugate Subgradients for Minimizing non Differentiable Functions, Math. Programming Study, 1975, 3, pp. 145-173. [MR: 448896] [Zbl: 0369.90093] [Google Scholar]
  • 27. W. ZANGWILL, The Convex-Simplex Methods, Management Sci., 1967, 14, pp. 221-238. [MR: 269300] [Zbl: 0153.49002] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.