Free Access
Issue
RAIRO-Oper. Res.
Volume 27, Number 3, 1993
Page(s) 293 - 306
DOI https://doi.org/10.1051/ro/1993270302931
Published online 06 February 2017
  • 1. L. AUSLANDER et H. TRENT, Incidence Matrices and Linear Graphs, J. of Maths and Mecha, 1959, 8, p. 827-835. [MR: 105371] [Zbl: 0173.26402] [Google Scholar]
  • 2. L. AUSLANDER et H. TRENT, On the Realization of a Linear Graph Given its Algebraic Specification, J. of Acoustical Society of America, 33, p. 1183-1192. [MR: 143198] [Google Scholar]
  • 3. P. BAPTISTE et J. FAVREL, Résolution de problèmes d'ordonnancements par graphes d'intervalles et treillis de galois. RAJ.R.O., 1984, 18, 4. [MR: 782439] [Zbl: 0549.90054] [Google Scholar]
  • 4. J. F. BENDERS, Partitionning Procedure for Solving Mixed Variables Programming Problems. Numerische Mathematik, 1962, 4, p. 238-252. [EuDML: 131533] [MR: 147303] [Zbl: 0109.38302] [Google Scholar]
  • 5. C. BERGE, Graphes et hypergraphes (chap. 5, 6), Dunod, 1974. [MR: 357173] [Zbl: 0213.25702] [Google Scholar]
  • 6. R. BIXBY et W. CUNINGHAM, Converting Linear Programs to Network Problems, Maths of Operat. Research, 1980, 5, p. 321-357. [MR: 594849] [Zbl: 0442.90095] [Google Scholar]
  • 7. M. CHEIN et M. HABIB, The Jump Number of Dags and Posets : an Introduction, Ann. of discrete math, 1980, 9, p. 189-194. [MR: 597371] [Zbl: 0445.05048] [Google Scholar]
  • 8. V. CHVATAL, Linear programming, Freeman, N.Y., 1983. [MR: 717219] [Zbl: 0537.90067] [Google Scholar]
  • 9. P. DUCHET, Problèmes de représentations et noyaux, Thèse d'État, Paris-VI, 1981. [Google Scholar]
  • 10. I. HELLER et A. HOFFMAN, On Unimodular Matrices, Pacific Journ. of Math., 1962, 72, p. 1321-1327. [MR: 150051] [Zbl: 0115.01104] [Google Scholar]
  • 11. A. HOFFMAN et J. KRUSKAL, Integral Boundary Points of Convex Polyedra, in Linear Inequalities and Related Systems, H. KUHN and A. TUCKER éds., Princeton Univ. Press, 1956, p. 223-246. [MR: 85148] [Zbl: 0072.37803] [Google Scholar]
  • 12. C. PAPADIMITRIOU et K. STEIGLITZ, Combinatorial optimization (chap. 3, 4, 5), Prentice Hall, 1982. [MR: 663728] [Zbl: 0503.90060] [Google Scholar]
  • 13. A. SCHRIJVER, Theory of Linear and Integer Programming (chap. 19, 20), Wiley Interscience, 1986. [MR: 874114] [Zbl: 0970.90052] [Google Scholar]
  • 14. P. SEYMOUR, Recognizing graphie matroids, Combinatorica, 1985, 1, p. 75-78. [MR: 602418] [Zbl: 0501.05022] [Google Scholar]
  • 15. P. SEYMOUR, Decomposition of Regular Matroids, J.C.T. B., 1980, 28, p. 305-359. [MR: 579077] [Zbl: 0443.05027] [Google Scholar]
  • 16. W. TUTTE, An Algorithm for Determining Whether a Given Binary Matroid is Graphic, Proc; of the American Math. Society, 1960, 11, p. 905-917. [MR: 117173] [Zbl: 0097.38905] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.