Free Access
Issue
RAIRO-Oper. Res.
Volume 27, Number 3, 1993
Page(s) 293 - 306
DOI https://doi.org/10.1051/ro/1993270302931
Published online 06 February 2017
  • 1. L. AUSLANDER et H. TRENT, Incidence Matrices and Linear Graphs, J. of Maths and Mecha, 1959, 8, p. 827-835. [MR: 105371] [Zbl: 0173.26402]
  • 2. L. AUSLANDER et H. TRENT, On the Realization of a Linear Graph Given its Algebraic Specification, J. of Acoustical Society of America, 33, p. 1183-1192. [MR: 143198]
  • 3. P. BAPTISTE et J. FAVREL, Résolution de problèmes d'ordonnancements par graphes d'intervalles et treillis de galois. RAJ.R.O., 1984, 18, 4. [MR: 782439] [Zbl: 0549.90054]
  • 4. J. F. BENDERS, Partitionning Procedure for Solving Mixed Variables Programming Problems. Numerische Mathematik, 1962, 4, p. 238-252. [EuDML: 131533] [MR: 147303] [Zbl: 0109.38302]
  • 5. C. BERGE, Graphes et hypergraphes (chap. 5, 6), Dunod, 1974. [MR: 357173] [Zbl: 0213.25702]
  • 6. R. BIXBY et W. CUNINGHAM, Converting Linear Programs to Network Problems, Maths of Operat. Research, 1980, 5, p. 321-357. [MR: 594849] [Zbl: 0442.90095]
  • 7. M. CHEIN et M. HABIB, The Jump Number of Dags and Posets : an Introduction, Ann. of discrete math, 1980, 9, p. 189-194. [MR: 597371] [Zbl: 0445.05048]
  • 8. V. CHVATAL, Linear programming, Freeman, N.Y., 1983. [MR: 717219] [Zbl: 0537.90067]
  • 9. P. DUCHET, Problèmes de représentations et noyaux, Thèse d'État, Paris-VI, 1981.
  • 10. I. HELLER et A. HOFFMAN, On Unimodular Matrices, Pacific Journ. of Math., 1962, 72, p. 1321-1327. [MR: 150051] [Zbl: 0115.01104]
  • 11. A. HOFFMAN et J. KRUSKAL, Integral Boundary Points of Convex Polyedra, in Linear Inequalities and Related Systems, H. KUHN and A. TUCKER éds., Princeton Univ. Press, 1956, p. 223-246. [MR: 85148] [Zbl: 0072.37803]
  • 12. C. PAPADIMITRIOU et K. STEIGLITZ, Combinatorial optimization (chap. 3, 4, 5), Prentice Hall, 1982. [MR: 663728] [Zbl: 0503.90060]
  • 13. A. SCHRIJVER, Theory of Linear and Integer Programming (chap. 19, 20), Wiley Interscience, 1986. [MR: 874114] [Zbl: 0970.90052]
  • 14. P. SEYMOUR, Recognizing graphie matroids, Combinatorica, 1985, 1, p. 75-78. [MR: 602418] [Zbl: 0501.05022]
  • 15. P. SEYMOUR, Decomposition of Regular Matroids, J.C.T. B., 1980, 28, p. 305-359. [MR: 579077] [Zbl: 0443.05027]
  • 16. W. TUTTE, An Algorithm for Determining Whether a Given Binary Matroid is Graphic, Proc; of the American Math. Society, 1960, 11, p. 905-917. [MR: 117173] [Zbl: 0097.38905]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.