Free Access
RAIRO-Oper. Res.
Volume 27, Number 3, 1993
Page(s) 281 - 292
Published online 06 February 2017
  • 1. C. G. E. BOENDER, A. H. G. RINNOOY KAN, L. STOUGIE and G. T. TIMMER, A stochastic method for global optimization, Mathematical Programming, 22, 1982, pp. 125-140. [MR: 643580] [Zbl: 0525.90076] [Google Scholar]
  • 2. P. COURRIEU, A Distributed Search Algorithm for Hard Optimization. Technical Report TA9101, CREPCO, Université de Provence, 13621 Aix-en-Provence Cedex 1, 1991. [Zbl: 0789.90073] [Google Scholar]
  • 3. P. COURRIEU, A convergent generator of neural networks, Technical Report TA9102, CREPCO, Université de Provence, 13621 Aix-en-Provence Cedex 1, 1991. [Google Scholar]
  • 4. T. CSENDES, A simple but hard-to-solve global optimization test problem. IIASA Workshop on Global Optimization, Sopron (Hungary), 1985. [Google Scholar]
  • 5. A. DEKKERS and E. AARTS, Global optimization and simulated annealing, Mathematical Programming, 50, 1991, pp. 367-393. [MR: 1114238] [Zbl: 0753.90060] [Google Scholar]
  • 6. R. FLETCHER and C. M. REEVES, Function minimization by conjugate gradients, Computer J., 7, 1964, pp. 149-154. [MR: 187375] [Zbl: 0132.11701] [Google Scholar]
  • 7. D. E. GOLDBERG, Genetic Algorithms in Search, Opitimization, and Machine Learning, Addison-Wesley, Reading, Massachusetts, 1989. [Zbl: 0721.68056] [Google Scholar]
  • 8. A. O. GRIEWANK, Generalized descent for global optimization, J. of Optimization Techniques and Application, 34, 1981, pp. 11-39. [MR: 626627] [Zbl: 0431.49036] [Google Scholar]
  • 9. J. H. HOLLAND, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975. [MR: 441393] [Zbl: 0317.68006] [Google Scholar]
  • 10. S. KIRKPATRICK, C. D. GELATT and M. P. VECCHI, optimization by simulated annealing, Science, 220, n° 4598, 1983, pp. 671-680. [Zbl: 1225.90162] [MR: 702485] [Google Scholar]
  • 11. R. LENGELLÉ and T. DENOEUX, Optimizing Multilayer networks layer per layer without backpropagation, paper presented at ICANN'92, Brighton (U.K.), September 4-7, 1992. [Google Scholar]
  • 12. N. METROPOLIS, A. W. ROSENBLUTH, M. N. ROSENBLUTH and A. H. TELLER, Equations of state calculations by fast computing machines, J. Chem. Phys., 21, 1953, pp. 1087-1091. [Google Scholar]
  • 13. A. H. G. RINNOOY KAN and G. T. TIMMER, Stochastic global optimization methods. Part I: clustering methods, Mathematical Programming, 39, 1987, pp. 27-56. [MR: 909007] [Zbl: 0634.90066] [Google Scholar]
  • 14. A. H. G. RINNOOY KAN and G. T. TIMMER, Stochastic global optimization methods. Part II: multi level methods, Mathematical Programming, 39, 1987, pp. 57-78. [MR: 909008] [Zbl: 0634.90067] [Google Scholar]
  • 15. D. VANDERBILT and S. G. LOUIE, A Monte Carlo Simulated Annealing approach to optimization over continuous variables, J. of Computational Physics, 56, 1984, pp. 259-271. [MR: 768477] [Zbl: 0551.65045] [Google Scholar]
  • 16. A. A. ZHIGLJAVSKY, Theory of Global Random Search, Kluwer Academic Publishers, Dordrecht, 1991. [MR: 1187048] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.