Free Access
Issue
RAIRO-Oper. Res.
Volume 27, Number 3, 1993
Page(s) 273 - 280
DOI https://doi.org/10.1051/ro/1993270302731
Published online 06 February 2017
  • 1. M. COSNARD et Y. ROBERT, Algorithme parallèle : une étude de complexité, Technique et Science Informatiques, 6, 2, 1987, p. 115-125. [Zbl: 0618.68036] [Google Scholar]
  • 2. M. COSNARD, M. MARRAKCHI, Y. ROBERT et D. TRYSTRAM, Parallel Gaussian elimination on an MIMD computer, Parallel Computing, 6, 1988, p. 275-296. [MR: 928314] [Zbl: 0634.65017] [Google Scholar]
  • 3. D. EVANS et R. C. DUNBAR, The parallel solution of triangular System of equations, I.E.E.E. Transactions on Computers, c-32, n° 2, February 1983, p. 201-204. [MR: 696685] [Google Scholar]
  • 4. S. P. KUMAR, Parallel algorithms for solving linear equations on MIMD computers, PhD Thesis, Washington State University, 1982. [Google Scholar]
  • 5. R. E. LORD, J. S. KOWALIK, et S. P. KUMAR, Solving linear algebraic equations on an MIND computer, J.A.C.M.30, 1, 1983, p. 103-117. [MR: 694482] [Zbl: 0502.65017] [Google Scholar]
  • 6. M. MARRAKCHI, Techniques d'ordonnancement et algorithme parallèle en algèbre linéaire, Thèse de l'I.N.P.G., Université de Grenoble, juillet 1988. [Google Scholar]
  • 7. M. MARRAKCHI et Y. ROBERT, Optimal scheduling algorithms for parallel iterative methods on multiprocessor Systems, rapport 693, janvier 1988, IMAG, Laboratoire TIM3, Grenoble. [Google Scholar]
  • 8. N. M. MISSIRLIS, Scheduling parallel iterative methods on multiprocessor Systems, Parallel Computing, 5, 1987, p. 295-302. [MR: 916009] [Zbl: 0626.65023] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.