Free Access
RAIRO-Oper. Res.
Volume 27, Number 4, 1993
Page(s) 389 - 400
Published online 06 February 2017
  • 1. W. J. ANDERSON, Continuons-Time Markov Chains, Springer Verlag, 1991. [MR: 1118840] [Zbl: 0731.60067] [Google Scholar]
  • 2. F. BASKETT, K. M. CHANDY, R. R. MUNTZ and F. G. PALACIOS, Open, Closed and Mixed Networks of Queues with Different Classes of Customers, J.A.C.M., 1975, 22, No. 2, pp. 248-260. [MR: 365749] [Zbl: 0313.68055] [Google Scholar]
  • 3. A. T. BHARUCHA-REID, Elements of the Theory of Markov Processes and Their Applications, McGraw Hill, 1960. [MR: 112177] [Zbl: 0095.32803] [Google Scholar]
  • 4. U. N. BHAT and I. V. BASAWA, Queueing and Related Models, Oxford Science Publications, 1992. [MR: 1210556] [Zbl: 0771.00010] [Google Scholar]
  • 5. Z. CHOUEERI, M. BECKER and A. L. BEYLOT, A Markov Model of Sources for ATM Traffic: Superposition of On-Off Voice, Data and Video Sources, Rapport MASI, No. 44, 1991. [Google Scholar]
  • 6. J.M. FOURNEAU and E. GELENBE, Multiple Class Random Networks with Product Form, Conference of the ORSA Technical Committee on Computer Science, Williamsburg, Virginie, 1992. [Google Scholar]
  • 7. E. GELENBE, Réseaux stochastiques ouverts avec clients négatifs et positifs, et réseaux neuronaux, C.R. Acad. Sci., 1989, t. 309, série II, pp. 979-982. [MR: 1029869] [Google Scholar]
  • 8. E. GELENBE and G. PUJOLLE, Introduction aux réseaux de files d'attente, Eyrolles, 1982. [MR: 687074] [Zbl: 0547.60092] [Google Scholar]
  • 9. B. V. GNEDENKO and I. N. KOVALENKO, Introduction to queueing theory, Birkhaser, 1989. [Zbl: 0186.24502] [Google Scholar]
  • 10. D. GROSS and C. M. HARRIS, Fundamentals of queueing theory, Wiley, 1974. [MR: 370819] [Zbl: 0949.60002] [Google Scholar]
  • 11. J. R. JACKSON, Jobshop-like queue system, Management Sci., 1963, vol. 10, pp.131-142. [Google Scholar]
  • 12. M. LEBAH and J. PELLAUMAIL, Moyennes et variances en regime transitoire pour certains processus de naissances et de morts généralisés, Colloque MOAD'92, Béjaia, 1992. [Google Scholar]
  • 13. M. LEBAH and J. PELLAUMAIL, Transient behavior for some Jackson networks, Performance Evaluation 17, 1993, pp. 115-122. [MR: 1211576] [Zbl: 0765.60093] [Google Scholar]
  • 14. M. F. NEUTS, Matrix-geometric solutions in stochastic models, The Johns Hopkins University Press, London, 1981. [MR: 618123] [Zbl: 0469.60002] [Google Scholar]
  • 15. J. PELLAUMAIL, Graphes, simulation, L-matrices, Hermès, Paris, 1992. [Zbl: 0925.68336] [Google Scholar]
  • 16. T. L. SAATY, Elements of queueing theory with applications, McGraw-Hill, 1961. [MR: 133176] [Zbl: 0100.34203] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.