Free Access
RAIRO-Oper. Res.
Volume 27, Number 4, 1993
Page(s) 401 - 426
Published online 06 February 2017
  • 1. J. R. BUNCH and L. KAUFMAN, A Computational Method for the Indefinite Quadratic Programming Problem, Linear Algebra andits App., 1980, 34, pp. 341-370. [MR: 591438] [Zbl: 0473.65036] [Google Scholar]
  • 2. J. J. DONGARRA, C. B. MOLER, J. R. BUNCH and G. W. STEWART, LINPACK Users' Guide, SIAM, Philadelphia, 1979. [Zbl: 0476.68025] [Google Scholar]
  • 3. R. FLETCHER, A General quadratic programming, J, Institute of Math. and its Appl., 1971, 7, pp. 76-91. [MR: 274032] [Zbl: 0226.90036] [Google Scholar]
  • 4. R. FLETCHER, Practical Methods of Optimization, John Wiley and Sons, Chichester and New York, second edition, 1987. [MR: 955799] [Zbl: 0474.65043] [Google Scholar]
  • 5. A. L. FORSGREN, P. E. GILL and W. MURRAY, On the identificaiton of local minimizers in inertia-controlling methods for quadratic programming. SIAM J. Matrix Anal. Appl., 1991, 12, pp.730-746. [MR: 1121706] [Zbl: 0737.65047] [Google Scholar]
  • 6. P. E. GILL, G. H. GOLUB, W. MURRAY and M. A. SAUNDERS, Methods for modifying matrix factorizations, Mathematics of Camputation, 1974, 28, (126), pp. 505-535. [MR: 343558] [Zbl: 0289.65021] [Google Scholar]
  • 7. P. E. GILL and W. MURRAY, Numerically stable methods for quadratic programing, Math. Programming, 1978, 14, pp. 349-372. [MR: 484411] [Zbl: 0374.90054] [Google Scholar]
  • 8. P. E. GILL, W. MURRAY, M. A. SAUNDERS and M. H. WRIGHT, Inertia-controlling methods for quadratic programming, SIAM Review, 1991, 33, pp. 1-36 [MR: 1095241] [Zbl: 0734.90062] [Google Scholar]
  • 9. P. E. GILL, W. MURRAY and M. H. WRIGHT, Pratical Optimization, Academic Press, London and NewYork, 1981. [MR: 634376] [Zbl: 0503.90062] [Google Scholar]
  • 10. W. HOCK and K. SCHITTKOWSKI, Test Examples for Nonlinear Programming Codes, Lecture in Economics and Mathematical Systems, Springer-Verlag, Berlin, Heidelberg and NewYork, 1981. [MR: 611512] [Zbl: 0658.90060] [Google Scholar]
  • 11. C. POLA, Algorithmos Numéricos para la resolución de problemas de optimización con restricciones, Ph. D. thesis, Dpto. Matemáticas, Estadística y Computación, Uniersidad de Cantabrian, Spain, 1992. [Google Scholar]
  • 12. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965. [MR: 184422] [Zbl: 0626.65029] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.