Free Access
Issue
RAIRO-Oper. Res.
Volume 29, Number 1, 1995
Page(s) 73 - 91
DOI https://doi.org/10.1051/ro/1995290100731
Published online 06 February 2017
  • 1. L. COOPER, N-dimensional Location Models: An application to Cluster Analysis, J. Regional Science, 1973, 13, pp. 41-54. [Google Scholar]
  • 2. Z. DREZNER, The p-center problem, Heuristics and Optimal algorithms, J. Oper. Res. Society, 1984, 35, pp. 741-748. [Zbl: 0544.90024] [Google Scholar]
  • 3. Z. DREZNER, On the complexity of the exchange algorithm for minimax optimization problems, Math. Programming, 1987, 38, pp. 219-222. [MR: 904589] [Zbl: 0632.90064] [Google Scholar]
  • 4. Z. DREZNER, G. O. WESOLOWSKY, Single facility Lp distance minimax location, SIAM J. of Algebraic and Discrete Methods, 1980, 1, pp. 315-321. [MR: 586159] [Zbl: 0501.90031] [Google Scholar]
  • 5. F. PLASTRIA, Solving general continuous single facility location problems by cutting planes, EJOR, 1987, 29, pp. 98-110. [MR: 882825] [Zbl: 0608.90022] [Google Scholar]
  • 6. M. E. DYER, A. M. FRIEZE, A Simple Heuristic for the p-Center Problem, Oper. Res. Letters, 1985, 3, pp. 285-288. [MR: 797340] [Zbl: 0556.90019] [Google Scholar]
  • 7. H. A. EISELT, G. CHARLESWORTH, A note on p-center problems in the plane, Transportation Science, 1986, 20, pp. 130-133. [MR: 878973] [Zbl: 0629.90031] [Google Scholar]
  • 8. J. ELZINGA, D. W. HEARN, Geometrical solutions for some minimax location problems, Transportation Science, 1972, 6, pp. 379-394. [MR: 349226] [Google Scholar]
  • 9. J. ELZINGA, D. W. HEARN, The Minimum Covering Sphere Problem, Management Science, 1972, 19, pp. 96-104. [MR: 311316] [Zbl: 0242.90061] [Google Scholar]
  • 10. R. L. FRANCIS, J. A. WHITE, Facility Layout and Location: An analytical approach, Prentice-Hall, 1974. [Google Scholar]
  • 11. W. L. HSU, G. L. NEMHAUSER, Easy and Hard bottleneck location problems, Discrete Appl. Math., 1979, 1, pp. 209-216. [MR: 549500] [Zbl: 0424.90049] [Google Scholar]
  • 12. N. MEGGIDO, K. J. SUPOWIT, On the complexity of some common geometric location problems, SIAM J. Computing 1984, 18, pp. 182-196. [MR: 731036] [Zbl: 0534.68032] [Google Scholar]
  • 13. B. PELEGRIN, The p-center prolem in Rn with weighted Tchebycheff norms, JORBEL, 1991, a, 31, pp. 49-62. [Zbl: 0747.90059] [Google Scholar]
  • 14. B. PELEGRIN, Heuristic methods for the p-center problem, RAIRO, 1991 b, 25, pp. 65-72. [EuDML: 105003] [MR: 1110775] [Zbl: 0732.90056] [Google Scholar]
  • 15. B. PELEGRIN, L. CANOVAS, A computational study of some heuristic algorithms for the p-center problem with weighted Tchebycheff norms, 1991 c, Presented at OR33 in Exeter, September 1991. United Kingdom. [Google Scholar]
  • 16. J. PLESNIK, A heuristic for the p-center problem in graphs, Discrete Applied Mathematics, 17, pp. 263-268. [MR: 890636] [Zbl: 0637.05020] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.