Free Access
RAIRO-Oper. Res.
Volume 29, Number 1, 1995
Page(s) 59 - 72
Published online 06 February 2017
  • 1. E. F. BECKENBACH, An Inequality of Jensen, American Mathematical Monthly, 53, 1946, pp. 501-505. [MR: 18707] [Zbl: 0060.14904] [Google Scholar]
  • 2. E.F. BECKENBACH, R. BELLMAN, Inequalities, Second revised printing, Springer-Verlag, Berlin, 1965. [MR: 192009] [Zbl: 0206.06802] [Google Scholar]
  • 3. J. BRIMBERG, R. F. LOVE, Estimating Travel Distance by the Weighted lp Norm, Naval Research Logistics, 38 1991, pp. 241-259. [MR: 1095935] [Zbl: 0717.90041] [Google Scholar]
  • 4. S. EILON, C. D. T. WATSOM-GANDY, N. CHRISTOFIDES, Distribution Management: Mathematical Modelling and Practical Analysis, Hafner Publishing Company, New York, 1971. [Google Scholar]
  • 5. V. GINSBURGH, P. HANSEN, Procedures for the Reduction of Errors in Road Network Data, Operational Research Quarterly, 25, 1974, pp. 321-322. [Google Scholar]
  • 6. G. H. HARDY, J. E. LITTLEWOOD, G. PÓLYA, Inequalities, 2nd edition, Cambridge University Press, Cambridge, 1952. [MR: 46395] [Zbl: 0634.26008] [JFM: 60.0169.01] [Google Scholar]
  • 7. R. KLEIN, Voronoi Diagrams in the Moscow Metric, Institute für Informatik, Universität Freiburg, 1987. [Google Scholar]
  • 8. G. B. KLEINDORFER, G. A. KOCHENBERG, E. T. REUTZEL, Computing Inter-Site Distances for Routing and Scheduling Problems, Operations Research Letters, 1, 1981, pp. 31-33. [Zbl: 0495.90044] [Google Scholar]
  • 9. P. KOLESAR, W. WALKER, J. HAUSNER, Determining the Relation between Fire Engine Travel Times and Travel Distances in New York City, Operations Research, 23, 1975, pp. 614-627. [Google Scholar]
  • 10. R. F. LOVE, J. G. MORRIS, Modelling Inter-City Road Distances by Mathematical Models, Operational Research Quarterly, 23, 1972, pp. 61-71. [Zbl: 0231.90059] [Google Scholar]
  • 11. R. F. LOVE, J. G. MORRIS, Mathematical Models of Road Travel Distances, Management Science, 25, 1979, pp. 130-139. [Zbl: 0419.90053] [Google Scholar]
  • 12. R. F. LOVE, J. G. MORRIS, On Estimating Road Distances by Mathematical Functions, European Journal of Operational Research, 36, 1988, pp. 251-253. [Google Scholar]
  • 13. R. F. LOVE, J. G. MORRIS, G. O. WESOLOWSKY, Facilities Location: Models and Methods, North-Holland, New York, N.Y., 1988. [MR: 1016608] [Zbl: 0685.90036] [Google Scholar]
  • 14. R. F. LOVE, J. H. WALKER, An Empirical Comparison of Block and Round Norms for Modelling Actual Distances, Location Science, to appear. [Zbl: 0926.90056] [Google Scholar]
  • 15. ROADNET, Roadnet Technologies, 10540 York Rd., Huntvalley, Maryland, 1993. [Google Scholar]
  • 16. TRUCKSTOPS 2-Vehicle Routing System, Micro-Analytics, Suite One, 2045 North 15th Street, Arlington, Virginia, and Suite 201, 1986 Queen Street East, Toronto, Ontario, 1993. [Google Scholar]
  • 17. J. E. WARD, R. E. WENDELL, A New Norm for Measuring Distance Which Yields Linear Location Models, Operations Research, 28, 1980, pp. 836-844. [Zbl: 0443.90029] [Google Scholar]
  • 18. J. E. WARD, R. E. WENDELL, Using Block Norms for Location Modelling, Operations Research 33, 1985, pp. 1074-1090. [MR: 806920] [Zbl: 0582.90026] [Google Scholar]
  • 19. J. B. WESTWOOD, A Transport Planning Model for Primary Distribution, Interfaces, 8, 1977, pp. 1-10. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.