Free Access
Issue |
RAIRO-Oper. Res.
Volume 29, Number 2, 1995
|
|
---|---|---|
Page(s) | 123 - 130 | |
DOI | https://doi.org/10.1051/ro/1995290201231 | |
Published online | 06 February 2017 |
- 1. M. AVRIEL, Nonlinear Programming, Analysis and Methods, Prentice Hall, New Jersey, 1976. [MR: 489892] [Zbl: 0498.90069] [Google Scholar]
- 2. Yu. M ERMOL'EV, On the method of generalized stochastic gradients and quasi-Fejér sequences, Cybernetics, 1969, 5, p. 208-220. [Google Scholar]
- 3. A. N. IUSEM, B. F. SVAITER and M. TEBOULLE, Entropy-like proximal methods in convex programming (to be published in Mathematics of Operations Research). [Zbl: 0821.90092] [Google Scholar]
- 4. B. LEMAIRE, The proximal algorithm, in International Series of Numerical Mathematics, 1989, 87, (J. P. Penot, ed), Birkhauser, Basel, p. 73-87. [MR: 1001168] [Zbl: 0692.90079] [Google Scholar]
- 5. J.-J MOREAU, Proximité et dualité dans un espace Hibertien, Bull. Soc. Math. France, 1965, 93, p. 273-299. [EuDML: 87067] [MR: 201952] [Zbl: 0136.12101] [Google Scholar]
- 6. B. POLYAK, Introduction to Optimization, Optimization Software, New York, 1987. [MR: 1099605] [Zbl: 0652.49002] [Google Scholar]
- 7. R. T. ROCKAFELLAR, Augmented Lagragians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 1976, 1, p. 97-116. [MR: 418919] [Zbl: 0402.90076] [Google Scholar]
- 8. R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 1976, 14, p. 877-898. [MR: 410483] [Zbl: 0358.90053] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.