Free Access
Issue
RAIRO-Oper. Res.
Volume 29, Number 2, 1995
Page(s) 131 - 154
DOI https://doi.org/10.1051/ro/1995290201311
Published online 06 February 2017
  • 1. S. ABDULFATTAH, M. SOUEYCATT, Analyse epi/hypo-graphique, Séminaire d'Analyse Convexe, Montpellier, Exposé n° 13, 1991. [MR: 1154513] [Zbl: 0893.49015]
  • 2. H. ATTOUCH, Variational convergence for functions and operators, Pitman, London, 1984. [MR: 773850] [Zbl: 0561.49012]
  • 3. H. ATTOUCH, Analyse épigraphique, Notes de cours de D.E.A., Montpellier, 1990.
  • 4. J. BORWEIN, A note on ε-subgradients and maximal monotonicity, Pacific J. Math., 1982, 103, pp. 307-314. [MR: 705231] [Zbl: 0525.49010]
  • 5. N. BOURBAKI, Espaces vectoriels topologiques, Chap. III, IV and V, Hermann, Paris, 1955. [Zbl: 0066.35301]
  • 6. A. BRONDSTED, R. T. ROCKAFELLAR, On the subdifferentiability of convex functions, Proceedings AMS, 16, 1965, pp. 605-611. [MR: 178103] [Zbl: 0141.11801]
  • 8. V. F. DEM'YANOV, L. V. VASIL'EV, Nondifferentiable optimization, Translation Series in Mathematics and Engineering, Optimization Software, Inc., New York, 1985. [MR: 816531] [Zbl: 0973.49500]
  • 8. D. DUBOIS, H. PRADE, Operations on fuzzy numbers, Int J. Systems Sci., 1978, 9, pp. 613-626. [MR: 491199] [Zbl: 0383.94045]
  • 9. A. ELQORTOBI, Inf-convolution quasi-convexe des fonctionnelles positives, Recherche Opérationnelle, 1992, 26, pp. 301-311. [EuDML: 105042] [MR: 1196903] [Zbl: 0783.49008]
  • 10. M. FEDRIZZI, Introduction to fuzzy sets and possibility theory, In Optimization models using fuzzy sets and possibility theory, J. KACPRZYK and S. A. ORLOVSKI (Eds.), Reidel Publishing Co., pp. 13-26. [MR: 917505] [Zbl: 0643.94046]
  • 11. A. HASSOUNI, Sous-différentiels de fonctions quasi-convexes, Thèse de 3e cycle, Université Paul Sabatier, Toulouse, 1983.
  • 12. N. HEUKEMES, V. H. NGUYEN, J.-J. STRODIOT, ε-optimal solutions in nondifferentiable programming and some related questions, Math. Programming, 1983, 25, pp. 307-365. [MR: 689660] [Zbl: 0495.90067]
  • 13. J.-B. HIRIART-URRUTY, A. SEEGER, The second-order subdifferential and the Dupin indicatrices of a nondifferentiable convex function, Proc. Math. Soc., 1989, 58, pp. 351-365. [MR: 977481] [Zbl: 0632.53009]
  • 14. M. KOLONKO, Optimal compactification of a floorplan and its relation to other optimization problems-A dynamic programming approach, ZOR-Meth. Oper. Res., 1993, 7, pp. 75-95. [MR: 1213679] [Zbl: 0768.90081]
  • 15. A.G. KUSRAEV, S. S. KUTATELADZE, Subdifferential calculus, Nauka Publishing House, Novosibirsk, 1987 (in Russian). [Zbl: 1137.49002]
  • 16. C. LEMARECHAL, J. ZOWE, Some remarks on the construction of higher-order algorithms in convex optimization, Applied Mathematics and Optimization, 1983, 10, pp. 51-68. [MR: 701900] [Zbl: 0527.65042]
  • 17. J. E. MARTINEZ-LEGAZ, On lower subdifferentiable functions. In Trends in Mathematical Optimization, K. H. HOFFMANN, J. B. HIRIART-URRUTY, C. LEMARECHAL, J. ZOWE, Eds., International Series of Numerical Mathematics, 84, Birkhàuser-Verlag, Basel, 1988, pp. 197-232. [MR: 1017954] [Zbl: 0643.49015]
  • 18. W. OETTLI, Epsilon-solutions and epsilon-supports, Optimization, 1985, 16, pp. 491-496. [MR: 791360] [Zbl: 0577.90060]
  • 19. G. PASSTY, The parallel sum of non-linear monotone operators, Nonlinear Analysis TMA, 1986, 10, pp. 215-227. [MR: 834503] [Zbl: 0628.47033]
  • 20. J.-P. PENOT, M. VOLLE, On strongly convex and paraconvex dualities, In Lecture Notes in Economies and Mathematical Systems, Springer-Verlag, 1990, 345, pp. 198-218. [MR: 1117933] [Zbl: 0701.49038]
  • 21. R. T. ROCKAFELLAR, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1970. [Zbl: 0932.90001]
  • 22. R. T. ROCKAFELLAR, Conjugate duality and optimization, In Regional Conference Series in Applied Mathematics, 1973, 16, SIAM Publications. [MR: 373611] [Zbl: 0296.90036]
  • 23. A. SEEGER, Analyse du second ordre de problèmes non différentiables, Thèse, Université Paul Sabatier, Toulouse, 1986.
  • 24. A. SEEGER, Direct and inverse addition in convex analysis and applications, J. Math. Anal and Appl., 1990, 148, pp. 317-349. [MR: 1052347] [Zbl: 0714.46009]
  • 25. A. SEEGER, Limiting behaviour of the approximate second-order subdifferential of a convex function, J. Optim. Th. Appl., 1992, 74, pp. 527-544. [MR: 1181850] [Zbl: 0792.49015]
  • 26. M. SION, On general minimax theorems, Pacifics J. Math., 1958, 8, pp. 171-176. [MR: 97026] [Zbl: 0081.11502]
  • 27. M. VALADIER, Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes, C. R. Acad. Sci. Paris, Série A, 1969, 268, pp. 39-42. [MR: 241975] [Zbl: 0164.43302]
  • 28. M. VOLLE, Convergence en niveaux et en épigraphes, C R. Acad. Sci.Paris, Série I, 1984, 299, pp. 295-298. [MR: 761250] [Zbl: 0566.49004]
  • 29. M. VOLLE, Quelques résultats relatifs à l'approche par les tranches de l'épi-convergence, Contributions à la dualité en optimisation et à l'épi-convergence, Thèse d'état, Université de Pau, 1986.
  • 30. M. VOLLE, Approximations quasi-infconvolutives, Publication du Département de Mathématiques de l'Université de Limoges, 1986.
  • 31. C. ZALINESCU, Programare metematiča în spatii normate infinit dimensionale (In Roumain), manuscript in preparation.
  • 32. J. ZOWE, Nondifferentiable optimization - A motivation and a short introduction into the subgradient and the bundie concept, Computational Mathematical Programming, K. SCHITTKOWSKI, Ed., Springer-Verlag, Berlin, 1985. [MR: 820049] [Zbl: 0581.90072]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.