Free Access
Issue
RAIRO-Oper. Res.
Volume 29, Number 3, 1995
Special Issue on Complexity and Industrial Systems
Page(s) 321 - 352
DOI https://doi.org/10.1051/ro/1995290303211
Published online 07 February 2017
  • 1. P. CHRÉTIENNE, Les Réseaux de Petri Temporises, Univ. Paris VI, Paris, France, Thèse d'État, 1983.
  • 2. F. COMMONER, A. HOLT, S. EVEN and A. PNUELI, Marked directed graphs, J. of Comp. and Syst. Sci., 1971, Vol. 5, No.5, pp. 511-523. [MR: 281542] [Zbl: 0238.05109]
  • 3. F. DI CESARE et al., Practice of Petri Nets in Manufacturing, ISBN 0412412306, CHAPMAN and HALL Eds., 1993.
  • 4. M. DI MASCOLO, Y. FREIN, Y. DALLERY and R. DAVID, A Unified Modeling of Kanban Systems Using Petri Nets, Technical Report No. 89-06. LAG, Grenoble, France, September, 1989.
  • 5. M. R. GAREY and D. S. JOHNSON, Computers and intractability, A guide for the theory of NP-completeness, W.H. Freeman and Company, 1979. [MR: 519066] [Zbl: 0411.68039]
  • 6. H. J. GENRICH and K. LAUTENBACH, System modelling with high-level Petri nets, Theoret. Comput. Sci., 1981, Vol. 13, pp. 109-136. [MR: 593866] [Zbl: 0454.68052]
  • 7. G. HARHALAKIS, M. LEVENTOPOULOS, C. P. LIN, R. NAGI and J. M. PROTH, A class of conflict free Petri nets used for controlling manufacturing Systems, Technical Research Report No. TR 92-90, Institute for Systems Research, The University of Maryland at College Park, October 1992.
  • 8. H. HILLION and J. M. PROTH, Performance Evaluation of Job-Shop Systems Using Timed Event-Graphs, IEEE Trans. Automat. Contr., January 1989 Vol. 34, No. 1, pp. 3-9. [MR: 970927] [Zbl: 0656.90054]
  • 9. K. JENSEN, Coloured Petri nets and the invariant method, Theoret. Comput. Sci., 1981, Vol. 14, pp. 317-336. [MR: 619005] [Zbl: 0475.68035]
  • 10. S. KIRKPATRICK, C. D. GELATT and M. P. VECCHI, Optimization bysimulated annealing, 1983, Science, Vol. 220, 13 May. [Zbl: 1225.90162]
  • 11. S. LAFTIT, J. M. PROTH and X. L. XIE, Optimization of invariant criteria for event graphs, IEEE Trans. on Aut. Control., 1992, Vol. 37, No. 5, pp. 547-555. [MR: 1158587] [Zbl: 0763.90053]
  • 12. M. LUNDY and A. MESS, Convergence of an annealing algorithm, Mathematical Programming, 1986, Vol. 34, pp. 111-124. [MR: 819878] [Zbl: 0581.90061]
  • 13. T. MURATA, Petri Nets: Properties, Analysis and Applications, Proceedings of the IEEE; April 1989, Vol. 77, No. 4, pp. 541-580.
  • 14. J. M. PROTH and X. L. XIE, Cycle time for stochastic event graphs: Evaluation and marking optimization, IEEE Trans, on Aut. Control, July 1994. Vol. 39, No. 7. [MR: 1283927] [Zbl: 0800.93038]
  • 15. C. RAMCHANDANI, Analysis of Asynchronous Concurrent Sxstems by Timed Petri Nets, Lab. Comput. Sci. Mass. Inst. Technol. Cambridge, MA, Tech. Rep. 120, 1974.
  • 16. C. V. RAMAMOORTHY and G. S. HO, Performance Evaluation of Asynchronous Concurrent Systems using Petri Nets, IEEE Trans. Software Eng., 1980, Vol. SE-6, No. 5, pp. 440-449. [MR: 585374] [Zbl: 0444.68044]
  • 17. W. REISIG, Petri nets with individual tokens, Informatik-Fachberichte, 1983, Vol. 66, No. 21, pp. 229-249. [MR: 733493] [Zbl: 0521.68057]
  • 18. J. SIFAKIS, A Unified Approach for Studying the properties of Transition Systems, 1982, Theoret. Comput. Sci., Vol. 18, pp. 227-258. [MR: 662671] [Zbl: 0478.68056]
  • 19. M. ZHOU and F. DI CESARE, Petri Net Synthesis for Discrete Event Control of Manufacturing Systems, Kluwer Academic Publisher, Boston, MA, 1993. [Zbl: 0849.93002]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.