Free Access
Issue
RAIRO-Oper. Res.
Volume 30, Number 2, 1996
Page(s) 171 - 189
DOI https://doi.org/10.1051/ro/1996300201711
Published online 10 February 2017
  • R. H. AHMADI and U. BAGCHI, Lower Bounds for Single-Machine Scheduling Problems, Nav. Res. Logist., 1990, 37, pp. 967-979. [MR: 1079884] [Zbl: 0722.90033]
  • K. R. BAKER, Introduction to Sequencing and Scheduling, John Wiley & Sons, New York, 1974.
  • K. R. BAKER and J. W. M. BERTRAND, A Dynamic Priority Rule for Scheduling Against Due-Dates, J. Opns. Man., 1982, 5, pp. 37-42.
  • K. R. BAKER and L. E. SCHRAGE, Finding an Optimal Sequence by Dynamic Programming: An Extension to Precedence-Related Tasks, Opns. Res., 1978, 26, pp. 111-120. [Zbl: 0376.90055]
  • K. R. BAKER and Z. SU, Sequencing with Due-Dates and Early Start Times to Minimize Maximum Tardiness, Nav. Res. Logist. Quart., 1974, 21, pp. 171-176. [MR: 343892] [Zbl: 0277.90044]
  • H. BELOUADAH, M. E. POSNER and C. N. POTTS, Scheduling with Release Dates on a Single Machine to Minimize Total Weighted Completion Time, Disc. Applied Math., 1992, 36, pp. 213-232. [MR: 1167506] [Zbl: 0757.90032]
  • L. BIANCO and S. RICCIARDELLI, Scheduling of a Single Machine to Minimize Total Weighted Completion Time Subject to Release Dates, Nav. Res. Logist Quart., 1982, 26, pp. 111-126. [Zbl: 0539.90044]
  • P. BRATLEY, M. FLORIAN and P. ROBILLARD, On Scheduling with Earliest Start and Due Dates with Application to Computing Bounds for the (n/m/G/Fmax) Problem, Nav. Res. Logist. Quart., 1973, 20, pp. 57-67. [MR: 411599] [Zbl: 0256.90027]
  • J. CARLIER, The One Machine Sequencing Problem. Europ. J. Oper. Res., 1982, 11, pp. 42-47. [MR: 671798] [Zbl: 0482.90045]
  • R. CHANDRA, On n/1/F Dynamic Deterministic Systems, Nav. Res. Logist Quart., 1979, 39, pp. 265-283. [Zbl: 0496.90044]
  • C. CHU, A Branch-and-Bound Algorithm to Minimize Total Tardiness with Different Release Dates, Nav. Res. Logist., 1992a, 39, pp. 265-283. [MR: 1178859] [Zbl: 0762.90035]
  • C. CHU, A Branch-and-Bound Algorithm to Minimize Total Flow Time with Unequal Release Dates, Nav. Res. Logist., 1992b, 39, pp. 859-875. [MR: 1178859] [Zbl: 0766.90039]
  • C. CHU, Efficient Heuristics to Minimize Total Flow Time with Release Dates, Operations Research Letters, 1992c, 12, pp. 321-330. [MR: 1189736] [Zbl: 0769.90047]
  • C. CHU, Scheduling to Minimize Over-Regular Criteria, Rapport de Recherche No. 1704, INRIA, Rocquencourt, France, 1992d.
  • C. CHU and R. W. CONWAY, W. L. MAXWELL and L. W. MILLER, Theory of Scheduling, Addison-Wesley, Reading, MA, 1967. [MR: 389180] [Zbl: 1058.90500]
  • J. S. DEOGUN, On Scheduling with Ready Times to Minimize Mean Flow Time, The Computer Journal, 1983, 26, pp. 320-328. [MR: 741903] [Zbl: 0523.68029]
  • M. I. DESSOUKY and J. S. DEOGUN, Scheduling Jobs with Unequal Ready Times to Minimize Mean Flow Time, SIAM Journal of Computing, 1981, 10, pp. 192-202. [MR: 605612] [Zbl: 0454.68010]
  • M. I. DESSOUKY and C. R. MARGENTHALER, The One-Machine Sequencing Problem with Early Starts and Due Dates, AIIE Transactions, 1972, 4, pp. 214-222.
  • J. DU and J. Y.-T. LEUNG, Minimizing Total Tardiness on One Machine is NP-hard. Math. Opns. Res., 1990, 75, pp. 483-495. [MR: 1064213] [Zbl: 0714.90052]
  • H. EMMONS, One-Machine Sequencing to Minimize Certain Functions of Job Tardiness, Opns. Res., 1969, 17, pp. 701-715. [MR: 243826] [Zbl: 0176.50005]
  • M. L. FISHER, A Dual Algorithm for the One-Machine Scheduling Problem, Math. Prog., 1976, 11, pp. 229-251. [MR: 496610] [Zbl: 0359.90039]
  • S. FRENCH, Sequencing and Scheduling: An introduction to the Mathematics of the Job-Shop, John Wiley & Sons, New York, 1982. [MR: 642978] [Zbl: 0479.90037]
  • J. GRABOWSKI, E. NOWICKI and S. ZDRZALKA, A Block Approach for Single-Machine Scheduling with Release Dates and Due Dates, Europ. J. Oper. Res., 1986, 26, pp. 278-285. [MR: 852298] [Zbl: 0603.90073]
  • N. G. HALL, Scheduling Problems with Generalized Due Dates, IIE Transactions, 1986, 18, pp. 220-222.
  • N. G. HALL and W. T. RHEE, Average and Worst-Case Analysis of Heuristics for the Maximum Tardiness Problem, Europ. J. Oper. Res., 1986, 26, pp. 272-277. [MR: 852297] [Zbl: 0599.90054]
  • N. G. HALL, S. P. SETHI and C. SRISKANDARAJAH, On the Complexity of Generalized Due Date Scheduling Problems, Europ. J Opnl Res., 1991, 57, pp. 100-109. [Zbl: 0742.90043]
  • A. M. A. HARIRI and C. N. POTTS, An Algorithm for Single Machine Sequencing with Release Dates to Minimize Total Weighted Completion Time, Discr. Appl. Math., 1983, 5, pp. 99-109. [Zbl: 0498.90044]
  • J. R. JACKSON, Scheduling a Production Line to Minimize Maximum Tardiness, Research Report, 1955, 43, Management Science Research Project, University of California, Los Angeles.
  • B. J. LAGEWEG, J. K. LENSTRA and A. H. G. RINNOOY KAN, Minimizing Maximum Lateness on One Machine: Computational Expérience and Some Applications, Statist. Neerlandica, 1976, 30, pp. 25-41. [MR: 434397] [Zbl: 0336.90029]
  • R. E. LARSON, M. I. DESSOUKY and R. E. DEVOR, A Forward-Backward Procedure for the Single Machine Problem to Minimize Maximum Lateness, IIE Transactions, 1985, 17, pp. 252-260.
  • E. L. LAWLER, A "Pseudopolynomial" Algorithm for Sequencing Jobs to Minimize Total Tardiness, Ann. Disc. Math., 1977, 1, pp. 331-342. [MR: 456420] [Zbl: 0353.68071]
  • E. L. LAWLER, A Fully Polynomial Approximation Scheme for the Total Tardiness Problem, Opns. Res.Lett., 1982, 1, pp.207-208. [Zbl: 0511.90074]
  • J. LIU and B. L. MACCARTHY, Effective Heuristics for the Single Machine Sequencing Problem with Ready Times, Int. J. Prod. Res., 1991, 29, pp. 1521-1533. [Zbl: 0728.90042]
  • G. MCMAHON and M. FLORIAN, On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness, Opns. Res., 1975, 23, pp. 475-482. [Zbl: 0301.90024]
  • C. N. POTTS, Analysis of a Heuristic for One Machine Sequencing with Release Dates and Delivery Times, Opns. Res., 1980, 28, pp.1436-1441. [MR: 609970] [Zbl: 0447.90041]
  • C. N. POTTS and L. N. VAN WASSENHOVE, A Decomposition Algorithm for the Single Machine Total Tardiness Problem, Opns. Res. Lett., 1982, 1, pp. 177-181. [Zbl: 0508.90045]
  • A. H. G. RINNOOY KAN, Machine Sequencing Problems: Classification, Complexity and Compilation, Nijhoff, The Hague, 1976.
  • J. SHWIMER, On the n-job, One-Machine, Sequence-Independent Scheduling Problem with Tardiness Penalties: a Branch-and-Bound Solution, Man. Sci., 1972, 18, pp. B301-B313. [MR: 292494] [Zbl: 0231.90030]
  • V. SRINIVASAN, A Hybrid Algorithm for the One Machine Sequencing Problem to Minimize Total Tardiness, Nav. Res. Logist. Quart., 1971, 18, pp. 317-327. [MR: 307683] [Zbl: 0229.90029]
  • L. J. WILKERSON and J. D. IRWIN, An Improved Algorithm for Scheduling Independent Tasks, AIIE Transactions, 1971, 3, pp.239-245.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.