Free Access
RAIRO-Oper. Res.
Volume 30, Number 2, 1996
Page(s) 171 - 189
Published online 10 February 2017
  • R. H. AHMADI and U. BAGCHI, Lower Bounds for Single-Machine Scheduling Problems, Nav. Res. Logist., 1990, 37, pp. 967-979. [MR: 1079884] [Zbl: 0722.90033] [Google Scholar]
  • K. R. BAKER, Introduction to Sequencing and Scheduling, John Wiley & Sons, New York, 1974. [Google Scholar]
  • K. R. BAKER and J. W. M. BERTRAND, A Dynamic Priority Rule for Scheduling Against Due-Dates, J. Opns. Man., 1982, 5, pp. 37-42. [Google Scholar]
  • K. R. BAKER and L. E. SCHRAGE, Finding an Optimal Sequence by Dynamic Programming: An Extension to Precedence-Related Tasks, Opns. Res., 1978, 26, pp. 111-120. [Zbl: 0376.90055] [Google Scholar]
  • K. R. BAKER and Z. SU, Sequencing with Due-Dates and Early Start Times to Minimize Maximum Tardiness, Nav. Res. Logist. Quart., 1974, 21, pp. 171-176. [MR: 343892] [Zbl: 0277.90044] [Google Scholar]
  • H. BELOUADAH, M. E. POSNER and C. N. POTTS, Scheduling with Release Dates on a Single Machine to Minimize Total Weighted Completion Time, Disc. Applied Math., 1992, 36, pp. 213-232. [MR: 1167506] [Zbl: 0757.90032] [Google Scholar]
  • L. BIANCO and S. RICCIARDELLI, Scheduling of a Single Machine to Minimize Total Weighted Completion Time Subject to Release Dates, Nav. Res. Logist Quart., 1982, 26, pp. 111-126. [Zbl: 0539.90044] [Google Scholar]
  • P. BRATLEY, M. FLORIAN and P. ROBILLARD, On Scheduling with Earliest Start and Due Dates with Application to Computing Bounds for the (n/m/G/Fmax) Problem, Nav. Res. Logist. Quart., 1973, 20, pp. 57-67. [MR: 411599] [Zbl: 0256.90027] [Google Scholar]
  • J. CARLIER, The One Machine Sequencing Problem. Europ. J. Oper. Res., 1982, 11, pp. 42-47. [MR: 671798] [Zbl: 0482.90045] [Google Scholar]
  • R. CHANDRA, On n/1/F Dynamic Deterministic Systems, Nav. Res. Logist Quart., 1979, 39, pp. 265-283. [Zbl: 0496.90044] [Google Scholar]
  • C. CHU, A Branch-and-Bound Algorithm to Minimize Total Tardiness with Different Release Dates, Nav. Res. Logist., 1992a, 39, pp. 265-283. [MR: 1178859] [Zbl: 0762.90035] [Google Scholar]
  • C. CHU, A Branch-and-Bound Algorithm to Minimize Total Flow Time with Unequal Release Dates, Nav. Res. Logist., 1992b, 39, pp. 859-875. [MR: 1178859] [Zbl: 0766.90039] [Google Scholar]
  • C. CHU, Efficient Heuristics to Minimize Total Flow Time with Release Dates, Operations Research Letters, 1992c, 12, pp. 321-330. [MR: 1189736] [Zbl: 0769.90047] [Google Scholar]
  • C. CHU, Scheduling to Minimize Over-Regular Criteria, Rapport de Recherche No. 1704, INRIA, Rocquencourt, France, 1992d. [Google Scholar]
  • C. CHU and R. W. CONWAY, W. L. MAXWELL and L. W. MILLER, Theory of Scheduling, Addison-Wesley, Reading, MA, 1967. [MR: 389180] [Zbl: 1058.90500] [Google Scholar]
  • J. S. DEOGUN, On Scheduling with Ready Times to Minimize Mean Flow Time, The Computer Journal, 1983, 26, pp. 320-328. [MR: 741903] [Zbl: 0523.68029] [Google Scholar]
  • M. I. DESSOUKY and J. S. DEOGUN, Scheduling Jobs with Unequal Ready Times to Minimize Mean Flow Time, SIAM Journal of Computing, 1981, 10, pp. 192-202. [MR: 605612] [Zbl: 0454.68010] [Google Scholar]
  • M. I. DESSOUKY and C. R. MARGENTHALER, The One-Machine Sequencing Problem with Early Starts and Due Dates, AIIE Transactions, 1972, 4, pp. 214-222. [Google Scholar]
  • J. DU and J. Y.-T. LEUNG, Minimizing Total Tardiness on One Machine is NP-hard. Math. Opns. Res., 1990, 75, pp. 483-495. [MR: 1064213] [Zbl: 0714.90052] [Google Scholar]
  • H. EMMONS, One-Machine Sequencing to Minimize Certain Functions of Job Tardiness, Opns. Res., 1969, 17, pp. 701-715. [MR: 243826] [Zbl: 0176.50005] [Google Scholar]
  • M. L. FISHER, A Dual Algorithm for the One-Machine Scheduling Problem, Math. Prog., 1976, 11, pp. 229-251. [MR: 496610] [Zbl: 0359.90039] [Google Scholar]
  • S. FRENCH, Sequencing and Scheduling: An introduction to the Mathematics of the Job-Shop, John Wiley & Sons, New York, 1982. [MR: 642978] [Zbl: 0479.90037] [Google Scholar]
  • J. GRABOWSKI, E. NOWICKI and S. ZDRZALKA, A Block Approach for Single-Machine Scheduling with Release Dates and Due Dates, Europ. J. Oper. Res., 1986, 26, pp. 278-285. [MR: 852298] [Zbl: 0603.90073] [Google Scholar]
  • N. G. HALL, Scheduling Problems with Generalized Due Dates, IIE Transactions, 1986, 18, pp. 220-222. [Google Scholar]
  • N. G. HALL and W. T. RHEE, Average and Worst-Case Analysis of Heuristics for the Maximum Tardiness Problem, Europ. J. Oper. Res., 1986, 26, pp. 272-277. [MR: 852297] [Zbl: 0599.90054] [Google Scholar]
  • N. G. HALL, S. P. SETHI and C. SRISKANDARAJAH, On the Complexity of Generalized Due Date Scheduling Problems, Europ. J Opnl Res., 1991, 57, pp. 100-109. [Zbl: 0742.90043] [Google Scholar]
  • A. M. A. HARIRI and C. N. POTTS, An Algorithm for Single Machine Sequencing with Release Dates to Minimize Total Weighted Completion Time, Discr. Appl. Math., 1983, 5, pp. 99-109. [Zbl: 0498.90044] [Google Scholar]
  • J. R. JACKSON, Scheduling a Production Line to Minimize Maximum Tardiness, Research Report, 1955, 43, Management Science Research Project, University of California, Los Angeles. [Google Scholar]
  • B. J. LAGEWEG, J. K. LENSTRA and A. H. G. RINNOOY KAN, Minimizing Maximum Lateness on One Machine: Computational Expérience and Some Applications, Statist. Neerlandica, 1976, 30, pp. 25-41. [MR: 434397] [Zbl: 0336.90029] [Google Scholar]
  • R. E. LARSON, M. I. DESSOUKY and R. E. DEVOR, A Forward-Backward Procedure for the Single Machine Problem to Minimize Maximum Lateness, IIE Transactions, 1985, 17, pp. 252-260. [Google Scholar]
  • E. L. LAWLER, A "Pseudopolynomial" Algorithm for Sequencing Jobs to Minimize Total Tardiness, Ann. Disc. Math., 1977, 1, pp. 331-342. [MR: 456420] [Zbl: 0353.68071] [Google Scholar]
  • E. L. LAWLER, A Fully Polynomial Approximation Scheme for the Total Tardiness Problem, Opns. Res.Lett., 1982, 1, pp.207-208. [Zbl: 0511.90074] [Google Scholar]
  • J. LIU and B. L. MACCARTHY, Effective Heuristics for the Single Machine Sequencing Problem with Ready Times, Int. J. Prod. Res., 1991, 29, pp. 1521-1533. [Zbl: 0728.90042] [Google Scholar]
  • G. MCMAHON and M. FLORIAN, On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness, Opns. Res., 1975, 23, pp. 475-482. [Zbl: 0301.90024] [Google Scholar]
  • C. N. POTTS, Analysis of a Heuristic for One Machine Sequencing with Release Dates and Delivery Times, Opns. Res., 1980, 28, pp.1436-1441. [MR: 609970] [Zbl: 0447.90041] [Google Scholar]
  • C. N. POTTS and L. N. VAN WASSENHOVE, A Decomposition Algorithm for the Single Machine Total Tardiness Problem, Opns. Res. Lett., 1982, 1, pp. 177-181. [Zbl: 0508.90045] [Google Scholar]
  • A. H. G. RINNOOY KAN, Machine Sequencing Problems: Classification, Complexity and Compilation, Nijhoff, The Hague, 1976. [Google Scholar]
  • J. SHWIMER, On the n-job, One-Machine, Sequence-Independent Scheduling Problem with Tardiness Penalties: a Branch-and-Bound Solution, Man. Sci., 1972, 18, pp. B301-B313. [MR: 292494] [Zbl: 0231.90030] [Google Scholar]
  • V. SRINIVASAN, A Hybrid Algorithm for the One Machine Sequencing Problem to Minimize Total Tardiness, Nav. Res. Logist. Quart., 1971, 18, pp. 317-327. [MR: 307683] [Zbl: 0229.90029] [Google Scholar]
  • L. J. WILKERSON and J. D. IRWIN, An Improved Algorithm for Scheduling Independent Tasks, AIIE Transactions, 1971, 3, pp.239-245. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.