Free Access
Issue
RAIRO-Oper. Res.
Volume 30, Number 4, 1996
Page(s) 333 - 357
DOI https://doi.org/10.1051/ro/1996300403331
Published online 10 February 2017
  • 1. R. K. AHUJA, K. MELHORN, J. B. ORLIN et R. E. TARJAN, Faster algorithms for the shortest path problem, Technical Report 193, MIT Operations Research Center, 1988. [Zbl: 0696.68046] [Google Scholar]
  • 2. D. BEAUQUIER, J. BERSTEL et Ph. CHRÉTIENNE, Éléments d'algorithmique, Masson, 1992. [Google Scholar]
  • 3. T. H. CORMEN, C. L. LEISERSON, R. L. RIVEST, Introduction to algorithms, The MIT Press, 1992. [Zbl: 1158.68538] [Google Scholar]
  • 4. E. DENARDO et B. Fox, Shortest-route methods. 1. Reaching, pruning and buckets, Operations Research, 1979, 27, p. 161-186. [MR: 519570] [Zbl: 0391.90089] [Google Scholar]
  • 5. R. DIAL, Algorithm 360: Shortest path forest with topological ordering, Communications of the ACM, 1969, 72, p. 632-633. [Google Scholar]
  • 6. J. J. DIVOKY, M. S. HUNG, Performance of shortest path algorithms in network flow problems, Management Science, 1990, 36, (6), p.661-673. [MR: 1059218] [Zbl: 0699.90031] [Google Scholar]
  • 7. G. N. FREDERICKSON, Fast algorithms for shortest paths in planar graphs with applications, SIAM Journal on Computing, 1987, 16, (6), p. 1004-1022. [MR: 917037] [Zbl: 0654.68087] [Google Scholar]
  • 8. F. GLOVER, R. GLOVER et D. KLINGMAN, Computational study of an improved shortest path algorithm, Networks, 1984, 14, p. 25-36. [Google Scholar]
  • 9. F. GLOVER, D. KLINGMAN et N. V. PHILLIPS, A new polynomially bounded shortest path algorithm, Opérations Research, 1985, 33, (1), p.65-73. [MR: 786047] [Zbl: 0578.90089] [Google Scholar]
  • 10. F. GLOVER, D. KLINGMAN, N. V. PHILLIPS et R. F. SCHNEIDER, New polynomial shortest path algorithms and their computational attributes, Management Science, 1985, 31, (9), p. 1106-1129. [MR: 821400] [Zbl: 0609.90103] [Google Scholar]
  • 11. M. GONDRAN et M. MINOUX, Graphes et Algorithmes, Eyrolles, 1979. [MR: 615739] [Zbl: 0497.05023] [Google Scholar]
  • 12. M.S. HUNG et J. J. DIVOKY, A computational study of efficient shortest path algorithms, Computers and Operations Research, 1988, 15, (6), p. 567-576. [MR: 974886] [Zbl: 0659.90087] [Google Scholar]
  • 13. D. KLINGMAN, R. F. SCHNEIDER, Microcomputer-based algorithms for large scale shortest path problems, Discrete Applied Mathematics, 1986, 73, p. 183-206. [MR: 837940] [Zbl: 0586.90086] [Google Scholar]
  • 14. M. MINOUX, Programmation mathématique, Masson, 1983 (2 volumes). [Zbl: 0546.90056] [Google Scholar]
  • 15. J. A. MCHUGH, Algorithmic graph theory, Prentice Hall, 1990. [Zbl: 0755.68056] [Google Scholar]
  • 16. U. PAPE, Algorith 562: shortest path lengths, ACM Trans. Math. Software, 1980, 5, p.450-455. [Zbl: 0442.68063] [Google Scholar]
  • 17. J. PEARL, Heuristics, Addison-Wesley, 1984. [Google Scholar]
  • 18. C. PRINS, Calcul sur micro-ordinateur de plus courts chemins dans les grands graphes peu denses, Rapport DAP-93-11, Département d'Automatique et Productique, École des Mines de Nantes. [Google Scholar]
  • 19. R. SEDGEWICK et J. S. VITTER, Shortest paths in euclidean graphs, Algorithmica, 1986, 1, p. 31-48. [MR: 833117] [Zbl: 0611.68044] [Google Scholar]
  • 20. M. SYSLO, N. DEO et J. S. KOWALIK, Discrete optimization algorithms with Pascal programs, Prentice Hall, 1993. [Zbl: 0574.90057] [Google Scholar]
  • 21. R. E. TARJAN, Data structures and network algorithms, SIAM, 1983. [MR: 826534] [Zbl: 0584.68077] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.