Free Access
Issue
RAIRO-Oper. Res.
Volume 30, Number 4, 1996
Page(s) 399 - 415
DOI https://doi.org/10.1051/ro/1996300403991
Published online 10 February 2017
  • 1. J.-P. AUBIN and I. EKELAND, Applied Nonlinear Analysis, Wiley, New York, 1984. [MR: 749753] [Zbl: 0641.47066] [Google Scholar]
  • 2. C. BAIOCCHI and A. CAPELO, Variational and Quasi-Variational Inequalities, Applications to Free Boundary Problems, Wiley, New York, 1984. [MR: 745619] [Zbl: 0551.49007] [Google Scholar]
  • 3. D. CHAN and J. S. PANG, The generalized quasi-variational problem, Math. Oper. Res., 1982, 7, pp. 211-222. [MR: 665558] [Zbl: 0502.90080] [Google Scholar]
  • 4. F. H. CLARKE, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. [MR: 709590] [Zbl: 0582.49001] [Google Scholar]
  • 5. P. T. HARKER and J. S. PANG, Finite-dimensional variational inequality and nonlinear complementary problems: A survey of theory, algorithms and applications, Math. Programming, 1990, 48, pp. 161-220. [MR: 1073707] [Zbl: 0734.90098] [Google Scholar]
  • 6. P. T. HARKER, Generalized Nash games and quasi-variational inequalities, European J. Oper. Res., 1991, 54, pp. 81-94. [Zbl: 0754.90070] [Google Scholar]
  • 7. J. HASLINGER and P. D. PANAGIOTOPOULOS, The reciprocal variational approach to the Signorini problem with friction. Approximation results, Proc. Royal Society of Edinburg, 1984, 98A, pp.365-383. [MR: 768357] [Zbl: 0547.73096] [Google Scholar]
  • 8. M. KOČVARA and J. V. OUTRATA, On optimization of Systems governed by implicit complementarity problems. Numer. Funct. Analysis and Optimization, 1994, 15, pp. 869-887. [MR: 1305577] [Zbl: 0813.73048] [Google Scholar]
  • 9. B. KUMMER, The inverse of a Lipschitz function in Rn: Complete characterization by directional derivatives, IIASA-Working paper WP-89-084. [Google Scholar]
  • 10. B. KUMMER, Newton's method based on generalized derivatives for nonsmooth functions: Convergence analysis, in Proc. 6th French-German Colloquium on Optimization, Lambrecht, FRG, 1991, Lecture Notes in Economics and Mathematical Systems, vol.382, Springer, Berlin, 1992, pp.171-194. [MR: 1229731] [Zbl: 0768.49012] [Google Scholar]
  • 11. J. KYPARISIS, Solution differentiability for variational inequalities, Math. Programming, 1990, 48, pp. 285-301. [MR: 1073712] [Zbl: 0727.90082] [Google Scholar]
  • 12. J. KYPARISIS, Ch. M. IP, Solution behaviour for parametric implicit complementarity problems, Math. Programming, 1992, 56, pp. 65-70. [MR: 1175559] [Zbl: 0762.90075] [Google Scholar]
  • 13. U. MOSCO, Implicit variational problems and quasi-variational inequalities, in Proc. Summer School "Nonlinear operators and the Calculas of Variations", Bruxelles, Belgium, 1975, Lecture Notes in Mathematics, Vol. 543, Springer, Berlin, 1976, pp. 83-156. [MR: 513202] [Zbl: 0346.49003] [Google Scholar]
  • 14. J. V. OUTRATA, On optimization problems with variational inequality constraints, SIAM J. Optim., 1994, 4, pp. 340-357. [MR: 1273763] [Zbl: 0826.90114] [Google Scholar]
  • 15. J. V. OUTRATA and J. ZOWE, A numerical approach to optimization problems with variational inequality constraints, Math. Programming, 1995, 68, pp. 105-130. [MR: 1312107] [Zbl: 0835.90093] [Google Scholar]
  • 16. J. V. OUTRATA and J. ZOWE, A Newton method for a class of quasi-variational inequalities, Comp. Optimization and Applications, 1995, 4, pp. 5-21. [MR: 1314522] [Zbl: 0827.49007] [Google Scholar]
  • 17. J. S. PANG, The implicit complementarity problem, in Proc. Symp. on Nonlinear Programming, Madison, Wisc., 1980, Academic Press, New York, 1981, pp. 487-518. [MR: 663390] [Zbl: 0534.90090] [Google Scholar]
  • 18. J. S. PANG, On the convergence of a basic iterative method for the implicit complementarity problems, J. of Optimiz. Theory and Applications, 1982, 37, pp. 149-162. [MR: 663519] [Zbl: 0482.90084] [Google Scholar]
  • 19. S. M. ROBINSON, Strongly regular generalized equations, Math. Oper. Res., 1980, 5, pp. 43-62. [MR: 561153] [Zbl: 0437.90094] [Google Scholar]
  • 20. S. M. ROBINSON, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res., 1991, 16, pp. 282-309. [MR: 1106803] [Zbl: 0746.46039] [Google Scholar]
  • 21. S. SCHOLTES, Introduction to piecewise differentiable equations, Preprint No. 53/ 1994, Inst. Für Statistik und Math. Wirtschaftstheorie, Universität Karlsruhe. [MR: 1419911] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.