Free Access
Issue
RAIRO-Oper. Res.
Volume 30, Number 4, 1996
Page(s) 373 - 398
DOI https://doi.org/10.1051/ro/1996300403731
Published online 10 February 2017
  • 1. E. AARTS et J. KORST, Simulated Annealing and Boltzmann Machines, Wiley, 1989. [MR: 983115] [Zbl: 0674.90059]
  • 2. S. BAGCHI, S. UCKUN, Y. MIYABE et K. KAWAMURA, Exploring Problem-Specific Recombination Operators for Job Shop Scheduling, Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, Calif., Morgan Kaufmann Publishers, 1991, p. 10-17.
  • 3. J. BLAZEWICZ, W. CELLARY, R. SLOWINSKI et J. WEGLARZ, Scheduling Under Resource Constraints: Deterministic Models, Annals of Operations Research, 7, 1986. [Zbl: 0668.90045]
  • 4. L. BOOKER, Improving Search in Genetic Algorithms, dans [14], 1987, p. 61-73.
  • 5. T. N. BUI et B. R. MOON, A Genetic Algorithm for a Special Class of the Quadratic Assignment Problem, Special Issue on Quadratic Assignment and Related Problems, DIMACS Series, 1993 (à paraître). [MR: 1290348] [Zbl: 0817.90053]
  • 6. B. CARTER et K. PARK, How good are genetic algorithms at finding large cliques: an experimental study, Technical Report BU-CS-93-015, Boston University, 1994.
  • 7. C. CAUX, H. PIERREVAL et M. C. PORTMANN, Les algorithmes génétiques et leur application aux problèmes d'ordonnancement, Actes des Journées d'Étude Ordonnancement et entreprise : applications concrètes et outils pour le futur, CNRS, Toulouse, 1994, p. 5-45.
  • 8. V. CERNY, A Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm, Journal of Optimization Theory and Applications, 1985, 15, p. 41-51. [MR: 778156] [Zbl: 0534.90091]
  • 9. J. CHAKRAPANI et J. SKORIN-KAPOV, Massively parallel tabu search for the quadratic assignment problem, Annals of Operations Reseach, 1993, 41, p. 327-341. [Zbl: 0775.90288]
  • 10. G. A. CLEVELAND et S. F. SMITH, Using Genetic Algorithms to Schedule Flow-Shop Releases, Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Editors, Los Altos, CA, 1989, p. 160-169.
  • 11. D. COSTA, An Evolutionary Tabu Search Algorithm and the NHL Scheduling Problem, INFOR, 1995, 33, p. 161-178. [Zbl: 0833.90095]
  • 12. L. DAVIS, Applying Adaptive Algorithms to Epistatic Domains, Proceedings of the International Joint Conference on Artificial Intelligence, 1985, p. 162-164.
  • 13. L. DAVIS, Job-Shop Scheduling With Genetic Algorithms, Proceedings of the First International Conference on Genetic Algorithms, J. J. GREFENSTETTE, éditeur, Lawrence Erlbaum Associates, Hillsdale, NJ, 1985, p. 136-140. [Zbl: 0681.68043]
  • 14. L. DAVIS, Genetic Algorithms and Simulated Annealing, Morgan Kaufmann Publishers, 1987. [Zbl: 0684.68013]
  • 15. L. DAVIS, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
  • 16. K. A. DEJONG et W. M. SPEARS, Using Genetic Algorithms to Solve NP-Complete Problems, Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Editors, Los Altos, CA, 1989, p. 124-132.
  • 17. C. FLEURENT et J. A. FERLAND, Genetic Hybrids for the Quadratic Assignment Problems, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, (P.M. PARDALOS et H. WOLKOWICZ eds.), 1994, 16, p. 173-188. [MR: 1290352] [Zbl: 0817.90056]
  • 18. C. FLEURENT et J. A. FERLAND, Object-Oriented Implementation of Heuristic Search Methods for Graph Coloring, Maximum Clique, and Satisfiability, DIMACS series in Discrete Mathematics and Theoretical Computer Science, (M. TRICK et D. JOHNSON eds.), 1996 (à paraître). [Zbl: 0864.90118]
  • 19. C. FLEURENT et J. A. FERLAND, Genetic Algorithms and Hybrids for Graph Coloring, Annals of Operations Research, 1995, 60. [Zbl: 0851.90095]
  • 20. C. FRIDEN, A. HERTZ et D. DE WERRA, STABULUS: A Technique for Finding Stable Sets in Large Graphs with Tabu Search, Computing, 1989, 42, p. 35-44. [Zbl: 0685.68056]
  • 21. M. R. GAREY et D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. FREEMAN and Co., San Francisco, 1979. [MR: 519066] [Zbl: 0411.68039]
  • 22. M. GENDREAU, P. SORIANO et L. SALVAIL, Solving the Maximum Clique Problem Using a Tabu Search Approach, Annals of Operations Research, 1993, 41, p. 385-403. [Zbl: 0775.90297]
  • 23. F. GLOVER, Heuristics for Integer Programming Using Surrogate Constraints, Decision Sciences, 1977, 8, p. 156-166.
  • 24. F. GLOVER, Future Paths for Integer Programming and Links to Artificial Intelligence, Computer and Operations Research, 1986, 13, p. 533-549. [MR: 868908] [Zbl: 0615.90083]
  • 25. F. GLOVER, Tabu Search-Part I, ORSA Journal on Computing, 1989, 1, p. 190-206. [Zbl: 0753.90054]
  • 26. F. GLOVER, Tabu Search-Part II, ORSA Journal on Computing, 1990, 2, p. 4-32. [Zbl: 0771.90084]
  • 27. F. GLOVER et M. LAGUNA, Tabu search, dans Modern Heuristic Techniques for Combinatorial Problems, C. R. Reeves éditeur, Blackwell Scientific Publications, Oxford, 1993, p. 70-141. [MR: 1665424]
  • 28. F. GLOVER, Genetic Algorithms and Scatter Search: Unsuspected Potentials, Rapport technique, University of Colorado at Boulder, 1993.
  • 29. D. E. GOLDBERG et R. LINGLE, Alleles, Loci, and the TSP, Proceedings of the First International Conference on Genetic Algorithms, J. J. GREFENSTETTE éditeur, Lawrence Erlbaum Associates, Hillsdale, NJ, 1985, p. 154-159. [Zbl: 0674.90095]
  • 30. D. E. GOLDBERG, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989. [Zbl: 0721.68056]
  • 31. J. J. GREFENSTETTE, Incorporating Problem Specific Knowledge into Genetic Algorithms, dans [14], 1987, p. 42-60.
  • 32. A. HERTZ et D. DE WERRA, Using Tabu Search Techniques for Graph Coloring, Computing, 1987, 39, p. 345-351. [MR: 923459] [Zbl: 0626.68051]
  • 33. J. H. HOLLAND, Adaptation in Natural and Artificial Systems, Ann Arbor, University of Michigan Press, 1975. [MR: 441393] [Zbl: 0317.68006]
  • 34. C. L. HUNTLEY et D. E. BROWN, A Parallel Heuristic for Quadratic Assignment Problems, Computers and Operations Research, 1991, 18, p. 275-289. [Zbl: 0723.90044]
  • 35. T. IBARAKI, Enumerative Approaches to Combinatorial Optimization, Part I, Annals of Operations Research, 1987, 10. [Zbl: 0667.90068]
  • 36. T. IBARAKI, Enumerative Approaches to Combinatorial Optimization, Part II, Annals of Operations Research, 1987, 11. [Zbl: 0667.90068]
  • 37. D. S. JOHNSON, C. R. ARAGON, L. A. MCGEOCH et C. SCHEVON, Optimization by Simulated Annealing: An Experimental Evaluation, Part I, Graph Partioning, Operations Research, 1989, 37, p. 865-892. [Zbl: 0698.90065]
  • 38. S. KIRKPATRICK, C. D. GELATT et M. P. VECCHI, Optimization by Simulated Annealing, Science, 1983, 220, p. 671-680. [Zbl: 1225.90162] [MR: 702485]
  • 39. E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN et D. B. SHMOYS, The Traveling Salesman Problem: A guided Tour of Combinatorial Optimization, John Wiley and Sons, New York, 1985. [MR: 811467] [Zbl: 0562.00014]
  • 40. S. LASH, Genetic Algorithms for Weighted Tardiness Scheduling on Parallel Machines, Technical Report 93-01, Department of Industrial Engineering and Management Sciences, North Western University, 1993.
  • 41. F. LEIGHTON, A graph coloring algorithm for large scheduling problems, Journal of Research of the National Bureau of Standards, 1979, 84, p. 489-505. [MR: 555214] [Zbl: 0437.68021]
  • 42. G. E. LIEPINS et M. D. VOSE, Representational Issues in Genetic Optimization, Journal of Experimental and Theoretical Artificial Intelligence, 1990, 2, p. 101-105.
  • 43. S. LIN, Computer Solutions of the Traveling Salesman Problem, Bell System Technical Journal, 1965, 44, p. 2245-2269. [MR: 189224] [Zbl: 0136.14705]
  • 44. S. LIN et B. W. KERNIGHAN, An Effective Heuristic for the Traveling Salesman Problem, Operations Research, 1973, 21, p. 498-516. [MR: 359742] [Zbl: 0256.90038]
  • 45. M. MALEK, M. GURUSWAMY, M. PANDYA et H. OWENS, Serial and Parallel Simulated Annealing and Tabu Search Algorithms for the Traveling Salesman Problem, Annals of Operations Research, 1989, 21, p. 59-84. [MR: 1043675] [Zbl: 0705.90069]
  • 46. Z. MICHALEWICZ, Genetic Algorithms+Data Structures=Evolution Programs, Springer-Verlag, Berlin, 1992. [MR: 1240748] [Zbl: 0818.68017]
  • 47. P. MOSCATO, An introduction to population approaches for optimization and hierarchical objective functions: A discussion on the role of tabu search, Annals of Operations Research, 1993, 41, p. 85-121. [Zbl: 0775.90292]
  • 48. H. MUHLENBEIN, M. GORGES-SCHLEUTER et O. KRAMER, Evolution Algorithms in Combinatorial Optimization, Parallel Computing, 1988, 7, p. 65-88. [Zbl: 0646.65054]
  • 49. R. NAKANO et T. YAMADA, Conventional Genetic Algorithm for Job Shop Problems, Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, Calif., Morgan Kaufmann Publishers, 1991, p. 474-479.
  • 50. R. NELSON et R. J. WILSON, Graph Colourings, Pitman Research Notes in Mathematics Series, 218, Longman Scientific and Technical, Harlow, Essex, UK, 1990. [MR: 1210064] [Zbl: 0693.05025]
  • 51. I. M. OLIVER, D. J. SMITH et J. R. C. HOLLAND, A Study of Permutation Crossover Operators on the Traveling Salesman Problem, Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, 1987, p. 224-230.
  • 52. P. M. PARDALOS et H. WOLKOWICZ, Quadratic Assignment and Related Problems, DIMACS Series in Mathematics and Theoretical Computer Science, 16, édité par l'American Mathematical Society, 1994. [MR: 1290344] [Zbl: 0797.00027]
  • 53. G. SYSWERDA, Uniform Crossover in Genetic Algorithms, Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, Calif., Morgan Kaufmann Publishers, 1989, p. 2-9.
  • 54. G. SYSWERDA, Schedule Optimization Using Genetic Algorithms, dans [15], 1991, p. 332-349.
  • 55. G. SYSWERDA et J. PALMUCCI, The Application of Genetic Algorithms to Resource Scheduling, Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, Calif., Morgan Kaufmann Publishers, 1991, p. 502-507.
  • 56. E. TAILLARD, Robust Taboo Search for the Quadratic Assignment problem, Parallel Computing, 1991, 17, p. 443-455. [MR: 1123015]
  • 57. E. TAILLARD, Recherches itératives dirigées parallèles, thèse de doctorat, École Polytechnique Fédérale de Lausanne, 1993.
  • 58. E. TAILLARD, Comparison of iteratives searches for the quadratic assignment problem, Rapport technique ORWP94/04, DMA, École Polytechnique Fédérale de Lausanne, 1994. [Zbl: 0916.90235]
  • 59. D. E. TATE et A. E. SMITH, A genetic approach to the quadratic assignment problem, Computers and Operations research (à paraître). [Zbl: 0812.90099]
  • 60. S. UCKUN, S. BAGCHI et K. KAWAMURA, Managing Genetic Search in Job Shop Scheduling, IEEE Expert, 1993, 8, p. 15-24.
  • 61. D. WELSH, Codes and Cryptography, Oxford University Press, New York, 1988. [MR: 959137] [Zbl: 0678.94003]
  • 62. D. WHITLEY, T. STARKWEATHER et D. FUQUAY, Scheduling Problems and Traveling Salesman: The Genetic Edge Recombination Operator, Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Editors, Los Altos, CA, 1989, p. 133-140.
  • 63. D. WHITLEY, T. STARKWEATHER et D. SHANER, The Traveling Salesman and Sequence Scheduling: Quality Solutions Using Genetic Edge Recombination, dans [15], 1991, p. 350-372.
  • 64. T. YAMADA et R. NAKANO, A Genetic Algorithm Applicable to Large Scale Job Shop Problems, dans Parallel Problem Solving from Nature, 2, R. MANNER et B. MANDERICK éds., North-Holland, Amsterdam, 1992, p. 281-290.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.