Free Access
Issue
RAIRO-Oper. Res.
Volume 31, Number 2, 1997
Page(s) 117 - 131
DOI https://doi.org/10.1051/ro/1997310201171
Published online 10 February 2017
  • 1. K. L. COOK et E. HALSEY, The Shortest Route Through a Network with Time Dependent Internodal Transit Times, Journal of Mathematical Analysis and Applications, vol. 14, 1966, p. 493-498. [MR: 192921] [Zbl: 0173.47601] [Google Scholar]
  • 2. A. DE PALMA, P. HANSEN et M. LABBÉ, Commuter's Paths with Penalties for Early or Late Arrival Time, CORE Discussion Paper n° 8712, 1987. [Zbl: 0724.90075] [Google Scholar]
  • 3. J. P. DESROSIERS et F. PELLETIER, F. SOUMIS, Plus court chemin avec contraintes d'Horaires, RAIRO, Recherche Opérationnelle, vol. 17, 1983, p. 1-21. [EuDML: 104840] [Zbl: 0528.90082] [Google Scholar]
  • 4. S. E. DREYFUS, An Appraisal of Some Shortest Path Algorithms, Operations Research, vol. 17, 1968, p. 395-412. [Zbl: 0172.44202] [Google Scholar]
  • 5. M. GONDRAN et M. MINOUX, Graphes et Algorithmes, Eyrolles, Paris, 1986. [MR: 868083] [Zbl: 0497.05023] [Google Scholar]
  • 6. R. W. HALL, The Fastest Path Through a Network with Random Time-Dependent Travel Times, Transportation Science, vol 20, 1986, p. 182-188. [Google Scholar]
  • 7. J. HALPERN et I. PRIESS, Shortest Path with Time Constraints on Mouvement and Parking, Network, vol 4, 1974, p. 241-253. [MR: 347378] [Zbl: 0284.90077] [Google Scholar]
  • 8. G. Y. HANDLER et I. ZANG, A Dual Algorithm for the Constrained Shortest Path Problem, Networks, vol 10, 1980, p. 293-310. [MR: 597270] [Zbl: 0453.68033] [Google Scholar]
  • 9. H. C. JOKSCH, The Shortest Route with Constraints, Journal of Mathematical.Analysis and Applications, vol. 14, 1966, p. 191-197. [MR: 192923] [Zbl: 0135.20506] [Google Scholar]
  • 10. C. MALANDRAKI, Time Dependent Vehicle Routing Problems: Formulations, Solution Algorithms and Computational Experiments, Thèse de Ph. D., Northwestern University, Evanston, Illinois, 1989. [Zbl: 0758.90029] [Google Scholar]
  • 11. M. MINOUX, Plus court chemin avec contraintes : algorithmes et application, Annales des Télécommunications, vol 30, 1975, p. 383-394. [Zbl: 0347.90065] [Google Scholar]
  • 12. M. MINOUX, Structures algébriques généralisées des problèmes de cheminement dans les graphes : théorèmes, algorithmes, et applications, RAIRO, Recherche Opérationnelle, vol. 10, 1976, p. 33-62. [EuDML: 104641] [MR: 446463] [Zbl: 0337.05122] [Google Scholar]
  • 13. M. MINOUX, Résolution des problèmes de grandes dimensions : programmation linéaire généralisée et techniques de décomposition, in Programmation Mathématique, Tome 2, Dunod, Paris, 1983, p. 55-105. [Google Scholar]
  • 14. C. RIBEIRO, M. MINOUX et M. PENNA, An Optimal Column Generation with Ranking Algorithm for Very Large S cale Set Partitionning Problems in Traffic Assignement, European Journal of Operation Research, vol. 41, 1989, p. 232-239. [MR: 1010320] [Zbl: 0679.90043] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.