Free Access
Issue
RAIRO-Oper. Res.
Volume 31, Number 2, 1997
Page(s) 107 - 115
DOI https://doi.org/10.1051/ro/1997310201071
Published online 10 February 2017
  • 1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The design and analysis of computer algorithms, Addison-Wesley, Amsterdam, 1984. [MR: 413592] [Zbl: 0326.68005] [Google Scholar]
  • 2. R. A. CUNNINGHAME-GREEN, The absolute centre of a graph, Discrete Applied Mathematics, 1984, 7, pp. 275-283. [MR: 736891] [Zbl: 0538.90091] [Google Scholar]
  • 3. S. K. GUPTA and A. P. PUNNEN, Group centre and group median of a network, European Journal of Operational Research, 1989, 38, pp. 94-97. [MR: 978498] [Zbl: 0676.90020] [Google Scholar]
  • 4. S. L. HAKIMI, E. F. SCHMEICHEL and M. LABBE, On locating path or tree shaped facilities on networks, Networks, 1993, 23, pp. 543-555. [MR: 1232611] [Zbl: 0806.90074] [Google Scholar]
  • 5. S. M. HEDETNIEIM, E. J. COCKAYNE and S. T. HEDETMEMI, Linear time algorithm for finding the Jordan centre and path centre of a tree, Transportation Science, 1981, 15, pp. 98-114. [MR: 639598] [Google Scholar]
  • 6. J. HOOKER, Solving non-linear single facility network location problems, Operations Research, 1986, 36, pp. 732-743. [MR: 884301] [Zbl: 0619.90020] [Google Scholar]
  • 7. J. N. HOOKER, R. S. GARFINKEL and C. K. CHEN, Finite dorninating sets for network location problems, Operations Research, 1991, 39, pp. 100-118. [MR: 1096193] [Zbl: 0744.90049] [Google Scholar]
  • 8. O. KARIV and S. L. HAKIMI, An algorithmic approach to network location problems, Part I: The p-centers, SIAM Journal of Applied Mathematica, 1979, 37, pp. 513-538. [MR: 549138] [Zbl: 0432.90074] [Google Scholar]
  • 9. R. K. KINCAID, T. J. LOWE and T. L. MORIN, The location of central: structures in trees, Computers and Operations Research, 1988, 15, pp. 103-113. [MR: 934626] [Zbl: 0635.90026] [Google Scholar]
  • 10. N. MEGIDDO, Linear time algorithms for linear programming in R3 and related problems, SIAM Journal of Computing, 1983, 12, pp. 759-776. [MR: 721011] [Zbl: 0521.68034] [Google Scholar]
  • 11. E. MINIEKA, The optimal location of a path or a tree in a tree network, Networks, 1985, 15, pp. 309-321. [MR: 801492] [Zbl: 0579.90027] [Google Scholar]
  • 12. C. A. MORGAN and P. J. SLATER, A linear time algorithm for a core of a tree, Journal of Algorithms, 1980, I. pp. 247-258. [MR: 604866] [Zbl: 0454.68067] [Google Scholar]
  • 13. M. B. RICHEY, Optimal location of a path or tree on a network with cycles, Networks, 1990, 20, pp. 391-407. [MR: 1058158] [Zbl: 0715.90071] [Google Scholar]
  • 14. R. RABINOVITCH and A. TAMIR, On tree shaped facility location problem of Minieka, Networks, 1992, 22, pp. 515-522. [MR: 1178860] [Zbl: 0794.90029] [Google Scholar]
  • 15. P. J. SLATER, On locating a facility to service areas within a network, Operations Research, 1981, 29, pp. 523-531. [MR: 629192] [Zbl: 0455.90028] [Google Scholar]
  • 16. P. J. SLATER, Locating central paths in a network, Transportation Science, 1982, 16, pp. 1-18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.