Free Access
Issue
RAIRO-Oper. Res.
Volume 31, Number 3, 1997
Page(s) 231 - 267
DOI https://doi.org/10.1051/ro/1997310302311
Published online 10 February 2017
  • 1. M. ALLAIS, The Foundations of a Positive Theory of Choice Involving Risk and a Criticism of the Postulate and Axioms of the American School, In M. Allais and Hagen (Eds) : Expected Utility Hypotheses and the Allais Paradox, D. Reidel, Dordrecht, 1979, p. 27-145. [MR: 568863] [Google Scholar]
  • 2. M. ALLAIS, The General Theory of Random Choices in Relation to The Invariant Cardinal Utility Function and The Specific Probability Function, The (u, θ) Model : an overview, In B. Munier (Eds), Risk, Decision and Rationality, D. Reidel, Dordrecht, Theory and Decision Library, 1987. [Zbl: 0676.90005] [Google Scholar]
  • 3. K. J. ARROW, Essays in the Theory of Risk-bearing, Markham Publishing Company, Chicago, 1971. [MR: 363427] [Zbl: 0215.58602] [Google Scholar]
  • 4. S. H. CHEW, A mixture set Axiomatization of Weighted Utility Theory, Unpublished Manuscript, University of Arizona, 1981. [Google Scholar]
  • 5. M. COHEN and J.-Y. JAFFRAY, Certainty Effect vs. Probability Distorsion : An Experimental Analysis of Decision Making under Risk, Journal of Experimental Psychology, 1988, 14, n°4, p. 554-560. [Google Scholar]
  • 6. M. COHEN, Security Level, Potentiel Level, Expected Utility : A Three- Criteria Decision Model Under Risk, Theory and Decision, 1992, 33, 2, p. 101-134. [MR: 1180515] [Zbl: 0770.90004] [Google Scholar]
  • 7. G. DEBREU, Representation of a Preference Ordering by a Numerical Function, Decision Processes-Thrall, Coombs, Davis (Eds), Wiley, New York, 1954. [MR: 66616] [Zbl: 0058.13803] [Google Scholar]
  • 8. S. ESSID, Aide à La Décision dans le Risque : Modèle et Logiciel, Thèse de Doctoratde l'Université de Paris VI, 1990. [Google Scholar]
  • 9. S. ESSID, J.-Y. JAFFRAY and T. SAID, Experimental Study of the (m, EU) Model, Progress in Decision, Utility and Risk Theory, Theory and Decision Library, Kluwer Academic Publishers, 1991, p. 165-173. [Google Scholar]
  • 10. S. ESSID, Pourquoi remettre en cause le modèle de l'espérance mathématique d'utilité?, Revue Tunisienne d'Economie et de Gestion, 1992, 7, n° 9, p. 211-236. [Google Scholar]
  • 11. S. ESSID, Généralisation d'un modèle axiomatique dans le risque incluant l'effet de certitude, International Conference on Mathematical Economics and. Mathematical Finance, Tunis, June 21-26, 1994. [Google Scholar]
  • 12. S. ESSID, Généralisation d'un Modèle Axiomatique dans le Risque incluant les Effets de Certitude et de Potentiel, Cahier n° 95.16.379, GREMAQ, Toulouse, France, 1995. [Google Scholar]
  • 13. T. S. FERGUSON, Mathematical Statistics, Academic Press, New York, 1967. [MR: 215390] [Zbl: 0153.47602] [Google Scholar]
  • 14. P. C. FISHBURN, Decision and Value Theory, Wiley, New York, 1964. [Zbl: 0149.16203] [Google Scholar]
  • 15. P. C. FISHBURN, Utility Theory for Decision Making, Wiley, New York, 1970. [MR: 264810] [Zbl: 0213.46202] [Google Scholar]
  • 16. P. C. FISHBURN, The Foundations of Expected Utility, D. Reidel Publishing Company, Dordrecht, 1982. [MR: 723663] [Zbl: 0497.90001] [Google Scholar]
  • 17. M. FRIEDMAN and L. J. SAVAGE, The Utility Analysis of Choices Involving Risks, Journal of Political Economy, 1948, 56, p. 279-304. [Google Scholar]
  • 18. I. GILBOA, A Combination of Expected Utility and Maxmin Decision Criteria, Journal of Mathematical Psychology, 1989. [MR: 970688] [Zbl: 0657.90007] [Google Scholar]
  • 19. I. HERTEIN and J. MILNOR, An Axiomatic Approach to Mesurable Utility, Econometrica, 1953, 21, p. 291-297. [MR: 61356] [Zbl: 0050.36705] [Google Scholar]
  • 20. J.-Y. JAFFRAY, Choice under Risk and The Security Factor : An Axiomatic Mode, Theory and Decision, 1988, 24, p. 169-200. [MR: 931044] [Zbl: 0631.90005] [Google Scholar]
  • 21. D. KAHNEMAN and A. TVERSKY, Prospect Theory : An Analysis of Decision Under Risk, Econometrica, 1979, 47, p. 263-291. [Zbl: 0411.90012] [Google Scholar]
  • 22. U.S. KARMARKAR, The Effet of Probabilities on The Subjective Evaluation of Lotteries, Masachussetts Institute of Technology, Sloan School of Management, Working Paper n° 698, 1974. [Google Scholar]
  • 23. R. L. KEENEY and H. RAIFFA, Decisions with Multiple Objectives : References and Values Tradeoffs, Wiley : New York, 1976. [MR: 449476] [Zbl: 0396.90001] [Google Scholar]
  • 24. L. L. LOPES, Between Hope and Fear : The Psychology of Risk, Advances in Experimental Social Psychology, 1986. [Google Scholar]
  • 25. M. J. MACHINA, Generalized Expected Utility Analysis and The Nature of Violations of The Independance Axiom, Foundations of Utility and Risk Theory with Applications, B. Stigum and Wenstop (Eds), 1983. [Google Scholar]
  • 26. M. J. MACHINA, Choice Under Uncertainty : Problems Solved and Unsolved, Journalof Economic Perspectives, 1987, 1, p. 121-154. [Google Scholar]
  • 27. M. R. MCCORD and R. DE NEUFVILLE, Lottery Equivalents : Reduction of The Certainty Effet Problem in Utility Assessment, Management Science, 1986, 32, p. 56-60. [Zbl: 0599.90008] [Google Scholar]
  • 28. J. QUIGGIN, A Theory of Anticipated Utility, Journal of Economic Behavior and Organisation, 1982, 3, p. 323-343. [Google Scholar]
  • 29. U. SEGAL, Non Linear Decision Weights with The Independance Axiom, UCLA Working Paper n° 353, 1984. [Google Scholar]
  • 30. J. von NEUMANN and O. MORGENSTERN, Theory of Games and Economic Behavior, Princeton University Press : New Jersey, 1947. [MR: 21298] [Zbl: 0063.05930] [Google Scholar]
  • 31. M. E. YAARI, The Dual Theory of Choice Under Risk, Econometrica, 1987, 55, p. 95-115. [MR: 875518] [Zbl: 0616.90005] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.