Free Access
Issue
RAIRO-Oper. Res.
Volume 31, Number 3, 1997
Page(s) 269 - 294
DOI https://doi.org/10.1051/ro/1997310302691
Published online 10 February 2017
  • 1. J. ABADIE and J. CARPENTIER, Generalization of the Wolfe reduced-gradient method to the case of nonlinear constraints, in Optimization, R. Fletcher (Ed.), Academic Press, London, 1969. [MR: 284206] [Zbl: 0254.90049] [Google Scholar]
  • 2. S. D. B. BITAR and A. FRIEDLANDER, On the identification properties of a trust-region algorithm on domains given by nonlinear inequalities, Relatório Técnico, Instituto de Matemática, Universidade Estadual de Campinas, Brazil 1995. [Google Scholar]
  • 3. P. T. BOGGS, J. W. TOLLE and P. WANG, On the local convergence of quasi-Newton methods for constrained optimization, SIAM Journal on Control and Optimization, 1982, 20, pp. 161-171. [MR: 646946] [Zbl: 0494.65036] [Google Scholar]
  • 4. M. R. CELIS, J. E. DENNIS and R. A. TAPIA, A trust region strategy for nonlinear equality constrained optimization, in Numerical Optimization, (P. T. Boggs, R. Byrd and R. Schnabel, eds.), SIAM, Philadelphia, 1984, pp. 71-82. [MR: 802084] [Zbl: 0566.65048] [Google Scholar]
  • 5. A. R. CONN, N. I. M. GOULD and Ph. L. TOINT, Global convergence of a class of trust region algorithms for optimization with simple bounds, SIAM Journal on Numerical Analysis, 1988, 25, pp. 433-460. See also SIAM Journal on Numerical Analysis, 1989, 26, pp. 764-767. [MR: 933734] [Zbl: 0643.65031] [Google Scholar]
  • 6. M. M. EL-ALEM, A global convergence theory for the Celis-Dennis-Tapia trust region algorithm for constrained optimization, SIAM Journal on Numerical Analysis, 1991, 28, pp. 266-290. [MR: 1083336] [Zbl: 0725.65061] [Google Scholar]
  • 7. R. FLETCHER, Practical Methods of Optimization, (2nd edition), John Wiley and Sons, Chichester, New York, Brisbane, Toronto and Singapore, 1987. [MR: 955799] [Zbl: 0474.65043] [Google Scholar]
  • 8. A. FRIEDLANDER, J. M. MARTÍNEZ and S. A. SANTOS, A new algorithm for bound constrained minimization, Journal of Applied Mathematics and Optimization, 1994, 30, pp. 235-266. [MR: 1288591] [Zbl: 0821.90101] [Google Scholar]
  • 9. D. M. GAY, Computing optimal locally constrained steps, SIAM J. Sci. Stat. Comput., 1981, 2, pp. 186-197. [MR: 622715] [Zbl: 0467.65027] [Google Scholar]
  • 10. M. HEINKENSCHLOSS, Mesh independence for nonlinear least squares problems with norm constraints, SIAM Journal on Optimization, 1993, 3, pp. 81-117. [MR: 1202003] [Zbl: 0771.65030] [Google Scholar]
  • 11. L. S. LASDON, Reduced gradient methods, in Nonlinear Optimization 1981, 1982, edited by M. J. D. Powell, Academic Press, New York, pp. 235-242. [MR: 775351] [Zbl: 0589.90067] [Google Scholar]
  • 12. D. LUENBERGER, Linear and Nonlinear Programming, Addison Wesley, 1984. [Zbl: 0571.90051] [Google Scholar]
  • 13. D. LYLE and M. SZULARZ, Local minima of the trust-region problem, Journal of Optimization Theory an Applications, 1994, 80, pp. 117-134. [MR: 1256140] [Zbl: 0797.90096] [Google Scholar]
  • 14. J. M. MARTÍNEZ, Fixed-point quasi-Newton methods, SIAM Journal on Numerical Analysis, 1992, 5, pp. 1413-1434. [MR: 1182737] [Zbl: 0758.65043] [Google Scholar]
  • 15. J. M. MARTÍNEZ, Local minimizers of quadratic functions on Euclidean balls and spheres, SIAM Journal on Optimization, 1994, 4, pp. 159-176. [MR: 1260413] [Zbl: 0801.65057] [Google Scholar]
  • 16. J. M. MARTÍNEZ and S. A. SANTOS, A trust-region strategy for minimization on arbitrary domains, Mathematical Programming, 1995, 68, pp. 267-301. [MR: 1319524] [Zbl: 0835.90092] [Google Scholar]
  • 17. J. J. MORÉ, Recent developments in algorithms and software for trust region methods, in Mathematical Programming Bonn 1982. The State of Art, A. Bachem, M. Grötschel and B. Korte, eds., Springer-Verlag, 1983. [MR: 717404] [Zbl: 0546.90077] [Google Scholar]
  • 18. J. J. MORÉ, Generalizations of the trust-region Problem, Optimization Methods and Software, 1993, 2, pp. 189-209. [Google Scholar]
  • 19. J. J. MORÉ and D. C. SORENSEN, Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, 1983, 4, pp. 553-572. [MR: 723110] [Zbl: 0551.65042] [Google Scholar]
  • 20. M. J. D. POWELL and Y. YUAN, A trust region algorithm for equality constrained optimization, Mathematical Programming, 1991, 49, pp. 189-211. [MR: 1087453] [Zbl: 0816.90121] [Google Scholar]
  • 21. R. J. STERN and H. WOLKOWICZ, Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations, Technical Report SOR 93-1, School of Engineering and Applied Science, Department of Civil Engineering and Operations Research, Princeton University, 1993. [MR: 1282693] [Zbl: 0846.49017] [Google Scholar]
  • 22. D. C. SORENSEN, Newton's method with a model trust region modification, SIAM Journal on Numerical Analysis, 1982, 19, pp. 409-426. [MR: 650060] [Zbl: 0483.65039] [Google Scholar]
  • 23. A. TIKHONOV and V. ARSENIN, Solutions of ill-posed problems, John Wiley and Sons, New York, Toronto, London, 1977. [MR: 455365] [Zbl: 0354.65028] [Google Scholar]
  • 24. C. R. VOGEL, A constrained least-squares regularization method for nonlinear ill-posed problems, SIAM Journal on Control and Optimization, 1990, 28, pp. 34-49. [MR: 1035971] [Zbl: 0696.65096] [Google Scholar]
  • 25. H. WOLKOWICZ, On the resolution of the trust region problem, Communication at the NATO-ASI Meeting on Continuons Optimization, II Ciocco, Italy, September 1993, 1993. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.