Free Access
RAIRO-Oper. Res.
Volume 31, Number 3, 1997
Page(s) 295 - 310
Published online 10 February 2017
  • [ARM] P. ARMAND and C. MALIVERT, Determination of the Efficient Set in Multiobjective Linear Programming, J. of Optimization Theory and Applications, 1991, 70, p.467-489. [MR: 1124774] [Zbl: 0793.90064] [Google Scholar]
  • [BEN 1] H. P. BENSON, Optimisation over the Efficient Set, Discussion Paper No. 35, Center for Econometrics and Decision Sciences, University of Florida, Gainesville, Florida, 1981. [Zbl: 0797.90058] [Google Scholar]
  • [BEN 2] H. P. BENSON, Optimization over the Efficient Set, J. of Mathematical Analysis and Applications, 1984, 98, p. 562-580. [MR: 730527] [Zbl: 0534.90077] [Google Scholar]
  • [BEN 3] H. P. BENSON, An algorithm for Optimizing over the Weakly-Efficient Set, European J. of Operational Research, 1986, 25, p.192-199. [MR: 841149] [Zbl: 0594.90082] [Google Scholar]
  • [BEN 4] H. P. BENSON, An All-Linear Programming Relaxation Algorithm for Optimizing over the Efficient Set, J. Of Global Optimization, 1991, 1, p. 83-104. [MR: 1263840] [Zbl: 0739.90056] [Google Scholar]
  • [BEN 5] H. P. BENSON, A Finite, Nonadjacent Extreme Point Search Algorithm for Optimization over the Efficient Set, J. of Optimization Theory and Applications, 1992, 73, p. 47-64. [MR: 1152234] [Zbl: 0794.90048] [Google Scholar]
  • [BEN 6] H. P. BENSON, A Face Search Heuristic Algorithm for Optimizing over the Efficient Set, Naval Research Logistics, 1993, 40, p. 103-116. [MR: 1201781] [Zbl: 0780.90080] [Google Scholar]
  • [BEN 7] H. P. BENSON, A Bisection-Extreme Point Search Algorithm for Optimizing over the Efficient Set in the Linear Dependence Case, J. of Global Optimization, 1993, 3, p. 95-111. [MR: 1264367] [Zbl: 0799.90101] [Google Scholar]
  • [BEN 8] H. P. BENSON, Optimization over the Efficient Set: Four Special Cases, J. of Optimization Theory and Applications, 1994, 80, n° 1. [MR: 1256134] [Zbl: 0797.90058] [Google Scholar]
  • [BEN 9] H. P. BENSON, A Finite Algorithm for Concave Minimization over a Polyedron, Naval Research Logistics Quaterly, 1985, 32, p. 165-177. [MR: 778303] [Zbl: 0581.90080] [Google Scholar]
  • [BOL 1] S. BOLINTINÉANU, Minimization of Quasi-Concave Function over an Efficient Set, Math. Programming, 1993, 61, p. 89-110. [MR: 1236426] [Zbl: 0799.90100] [Google Scholar]
  • [BOL 2] S. BOLINTINÉANU, Optimality Conditions for Minimization over the (Weakly or Properly) Efficient Set, J. of Mathematical Analysis and Applications, 1993173, n° 2, p. 523-541. [MR: 1209337] [Zbl: 0796.90044] [Google Scholar]
  • [BOL 3] S. BOLINTINÉANU, Necessary Conditions for Nonlinear Suboptimization over the Weakly-Efficient Set, J. of Optimization Theory and Applications, 1993, 78, n° 3. [MR: 1240437] [Zbl: 0794.90049] [Google Scholar]
  • [CAB] A. V. CABOT, Variations on a Cutting Plane Method for Solving Concave Minimization Problems with Linear Constraints, Naval Research Logistics Quarterly, 1974, 21, p. 265-274. [MR: 349225] [Zbl: 0348.90131] [Google Scholar]
  • [DAU] J. P. DAUER, Optimisation over the Efficient Set Using an Active Constraint Approach, Zeitschrift fur Opérations Research, 1991, 35, p. 185-195. [MR: 1114291] [Zbl: 0734.90081] [Google Scholar]
  • [DES] M. I. DESSOUK, M. GHIASSIandW. J. DAVIS, Determining the Worst Value of an Objective Function within the Nondominated Solutions in Multiple Objective Linear Programming, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, III., 1979. [Google Scholar]
  • [FAL] J. E. FALK and K. R. HOFFMANN, A Successive Underestimation Method for Concave Minimization Problems, Math. of Operations Research, 1976, 1, p. 251-259. [Zbl: 0362.90082] [Google Scholar]
  • [GAL] G. GALLO and A. ÜLKÜCCÜ, Bilinear Programming: An Exact Algorithm, Math. Programming, 1977, 12, p. 173-194. [MR: 449682] [Zbl: 0363.90086] [Google Scholar]
  • [HOR] R. HORST and H. TUY, Global Optimisation: Deterministic Approches, Springer-Verlag, Berlin, Germany, Second Edition, 1993. [MR: 1274246] [Zbl: 0704.90057] [Google Scholar]
  • [ISE] H. ISERMANN and R. E. STEUER, Computational Experience Concerning Payoff Tables and Minimum Criterion Values over the Efficient Set, European J. of Operational Research, 1987, 33, p. 91-97. [MR: 923641] [Zbl: 0632.90074] [Google Scholar]
  • [KON] H. KONNO, A Cutting Plane Algorithm for Solving Bilincar Programs, Math. Programming, 1976, 11, p. 14-27. [MR: 441328] [Zbl: 0353.90069] [Google Scholar]
  • [LUC] D.T. LUC, Theory of Vector Optimization: Lectures Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1989. [MR: 1116766] [Zbl: 0654.90082] [Google Scholar]
  • [LUE] D. G. LUENBERGER, Linear and Nonlinear Programming, Addison Wesley Publishing Company, Reading, Massachusetts, Second Edition, 1984. [MR: 2012832] [Zbl: 0571.90051] [Google Scholar]
  • [MAJ] A. MAJTHAYandA. WHINSTON, Quasiconcave Minimization Subject a Linear Constraints, Discrete Math., 1974. 9, p. 35-59. [MR: 378828] [Zbl: 0301.90037] [Google Scholar]
  • [MUU] L. D. MUU, A Method for Optimization of a Linear over the Efficient Set, Institute of Mathematics, Hanoi, Preprint 15, 1991. [Zbl: 0743.90101] [Google Scholar]
  • [PHI] J. PHILIP, Algorithm for the Maximization Problem, Math. Programming, 1972, 2, p. 207-229. [MR: 302205] [Zbl: 0288.90052] [Google Scholar]
  • [ROC] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. [MR: 274683] [Zbl: 0932.90001] [Google Scholar]
  • [ROS] J. B. ROSEN, Global Minimization of a Linearly Constrained Concave Function by Partition of Feasible Domain, Math, of Operations Research, 1983, 8, p. 215-230. [MR: 707054] [Zbl: 0526.90072] [Google Scholar]
  • [SAW] Y. SAWARAGI, H. NAKAYAMA and T. TANINO, Theory of Multiobjective Optimization, Academic Press, Orlando, Florida, 1985. [MR: 807529] [Zbl: 0566.90053] [Google Scholar]
  • [TAH] H. A. TAHA, Concave Minimization over a Convex Polyedron, Naval Research Logistics Quarterly, 1973, 20, p. 533-548. [MR: 337007] [Zbl: 0286.90052] [Google Scholar]
  • [TUY] H. TUY, Concave Programming under Linear Constraints, Soviet. Math., 1964, 5, p. 1437-1460. [Zbl: 0132.40103] [Google Scholar]
  • [ZWA] P. B. ZWART, Global Miminization of a Convex Function with Linear Inequality Constraints, Operations Research, 1974, 22, p. 602-609. [MR: 452691] [Zbl: 0322.90049] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.