Free Access
Issue
RAIRO-Oper. Res.
Volume 31, Number 3, 1997
Page(s) 295 - 310
DOI https://doi.org/10.1051/ro/1997310302951
Published online 10 February 2017
  • [ARM] P. ARMAND and C. MALIVERT, Determination of the Efficient Set in Multiobjective Linear Programming, J. of Optimization Theory and Applications, 1991, 70, p.467-489. [MR: 1124774] [Zbl: 0793.90064]
  • [BEN 1] H. P. BENSON, Optimisation over the Efficient Set, Discussion Paper No. 35, Center for Econometrics and Decision Sciences, University of Florida, Gainesville, Florida, 1981. [Zbl: 0797.90058]
  • [BEN 2] H. P. BENSON, Optimization over the Efficient Set, J. of Mathematical Analysis and Applications, 1984, 98, p. 562-580. [MR: 730527] [Zbl: 0534.90077]
  • [BEN 3] H. P. BENSON, An algorithm for Optimizing over the Weakly-Efficient Set, European J. of Operational Research, 1986, 25, p.192-199. [MR: 841149] [Zbl: 0594.90082]
  • [BEN 4] H. P. BENSON, An All-Linear Programming Relaxation Algorithm for Optimizing over the Efficient Set, J. Of Global Optimization, 1991, 1, p. 83-104. [MR: 1263840] [Zbl: 0739.90056]
  • [BEN 5] H. P. BENSON, A Finite, Nonadjacent Extreme Point Search Algorithm for Optimization over the Efficient Set, J. of Optimization Theory and Applications, 1992, 73, p. 47-64. [MR: 1152234] [Zbl: 0794.90048]
  • [BEN 6] H. P. BENSON, A Face Search Heuristic Algorithm for Optimizing over the Efficient Set, Naval Research Logistics, 1993, 40, p. 103-116. [MR: 1201781] [Zbl: 0780.90080]
  • [BEN 7] H. P. BENSON, A Bisection-Extreme Point Search Algorithm for Optimizing over the Efficient Set in the Linear Dependence Case, J. of Global Optimization, 1993, 3, p. 95-111. [MR: 1264367] [Zbl: 0799.90101]
  • [BEN 8] H. P. BENSON, Optimization over the Efficient Set: Four Special Cases, J. of Optimization Theory and Applications, 1994, 80, n° 1. [MR: 1256134] [Zbl: 0797.90058]
  • [BEN 9] H. P. BENSON, A Finite Algorithm for Concave Minimization over a Polyedron, Naval Research Logistics Quaterly, 1985, 32, p. 165-177. [MR: 778303] [Zbl: 0581.90080]
  • [BOL 1] S. BOLINTINÉANU, Minimization of Quasi-Concave Function over an Efficient Set, Math. Programming, 1993, 61, p. 89-110. [MR: 1236426] [Zbl: 0799.90100]
  • [BOL 2] S. BOLINTINÉANU, Optimality Conditions for Minimization over the (Weakly or Properly) Efficient Set, J. of Mathematical Analysis and Applications, 1993173, n° 2, p. 523-541. [MR: 1209337] [Zbl: 0796.90044]
  • [BOL 3] S. BOLINTINÉANU, Necessary Conditions for Nonlinear Suboptimization over the Weakly-Efficient Set, J. of Optimization Theory and Applications, 1993, 78, n° 3. [MR: 1240437] [Zbl: 0794.90049]
  • [CAB] A. V. CABOT, Variations on a Cutting Plane Method for Solving Concave Minimization Problems with Linear Constraints, Naval Research Logistics Quarterly, 1974, 21, p. 265-274. [MR: 349225] [Zbl: 0348.90131]
  • [DAU] J. P. DAUER, Optimisation over the Efficient Set Using an Active Constraint Approach, Zeitschrift fur Opérations Research, 1991, 35, p. 185-195. [MR: 1114291] [Zbl: 0734.90081]
  • [DES] M. I. DESSOUK, M. GHIASSIandW. J. DAVIS, Determining the Worst Value of an Objective Function within the Nondominated Solutions in Multiple Objective Linear Programming, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, III., 1979.
  • [FAL] J. E. FALK and K. R. HOFFMANN, A Successive Underestimation Method for Concave Minimization Problems, Math. of Operations Research, 1976, 1, p. 251-259. [Zbl: 0362.90082]
  • [GAL] G. GALLO and A. ÜLKÜCCÜ, Bilinear Programming: An Exact Algorithm, Math. Programming, 1977, 12, p. 173-194. [MR: 449682] [Zbl: 0363.90086]
  • [HOR] R. HORST and H. TUY, Global Optimisation: Deterministic Approches, Springer-Verlag, Berlin, Germany, Second Edition, 1993. [MR: 1274246] [Zbl: 0704.90057]
  • [ISE] H. ISERMANN and R. E. STEUER, Computational Experience Concerning Payoff Tables and Minimum Criterion Values over the Efficient Set, European J. of Operational Research, 1987, 33, p. 91-97. [MR: 923641] [Zbl: 0632.90074]
  • [KON] H. KONNO, A Cutting Plane Algorithm for Solving Bilincar Programs, Math. Programming, 1976, 11, p. 14-27. [MR: 441328] [Zbl: 0353.90069]
  • [LUC] D.T. LUC, Theory of Vector Optimization: Lectures Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, 1989. [MR: 1116766] [Zbl: 0654.90082]
  • [LUE] D. G. LUENBERGER, Linear and Nonlinear Programming, Addison Wesley Publishing Company, Reading, Massachusetts, Second Edition, 1984. [MR: 2012832] [Zbl: 0571.90051]
  • [MAJ] A. MAJTHAYandA. WHINSTON, Quasiconcave Minimization Subject a Linear Constraints, Discrete Math., 1974. 9, p. 35-59. [MR: 378828] [Zbl: 0301.90037]
  • [MUU] L. D. MUU, A Method for Optimization of a Linear over the Efficient Set, Institute of Mathematics, Hanoi, Preprint 15, 1991. [Zbl: 0743.90101]
  • [PHI] J. PHILIP, Algorithm for the Maximization Problem, Math. Programming, 1972, 2, p. 207-229. [MR: 302205] [Zbl: 0288.90052]
  • [ROC] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. [MR: 274683] [Zbl: 0932.90001]
  • [ROS] J. B. ROSEN, Global Minimization of a Linearly Constrained Concave Function by Partition of Feasible Domain, Math, of Operations Research, 1983, 8, p. 215-230. [MR: 707054] [Zbl: 0526.90072]
  • [SAW] Y. SAWARAGI, H. NAKAYAMA and T. TANINO, Theory of Multiobjective Optimization, Academic Press, Orlando, Florida, 1985. [MR: 807529] [Zbl: 0566.90053]
  • [TAH] H. A. TAHA, Concave Minimization over a Convex Polyedron, Naval Research Logistics Quarterly, 1973, 20, p. 533-548. [MR: 337007] [Zbl: 0286.90052]
  • [TUY] H. TUY, Concave Programming under Linear Constraints, Soviet. Math., 1964, 5, p. 1437-1460. [Zbl: 0132.40103]
  • [ZWA] P. B. ZWART, Global Miminization of a Convex Function with Linear Inequality Constraints, Operations Research, 1974, 22, p. 602-609. [MR: 452691] [Zbl: 0322.90049]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.