Free Access
Issue
RAIRO-Oper. Res.
Volume 32, Number 4, 1998
Page(s) 399 - 414
DOI https://doi.org/10.1051/ro/1998320403991
Published online 10 February 2017
  • 1.D. BHATIA and P. JAIN, Generalized (F, P)-Convexity and Duality for Non-smooth Multiobjective Programming, Optimization, 1994, 31, pp. 153-164. [Zbl: 0819.90082] [Google Scholar]
  • 2.C. R. BECTOR, S. CHANDRAandV. KUMAR, Duality for Minmax Programming Involving V-Invex Functions, Optimization, 1994, 30, pp. 93-103. [MR: 1285099] [Zbl: 0816.49028] [Google Scholar]
  • 3.V. CHANKONGand Y. Y. HAIMES, Multiobjective Decision Making, Theory and Methodology, North-Holland, New York. [MR: 780745] [Zbl: 0622.90002] [Google Scholar]
  • 4. F. H. CLARKE, Optimization and Non-smooth Analysis, Wiley-Interscience, New York, Numerical Analysis and Application Sciences, 1983, pp. 514-550. [Google Scholar]
  • 5. R. R. EGUDO, Efficiency and Generalized Convex Duality for Multiobjective Programs, Journal of Mathematical Analysis and Applications, 1989, 138, pp. 184-194. [MR: 988321] [Zbl: 0686.90039] [Google Scholar]
  • 6. M. M. HANSON, On Sufficiency of Kuhn-Tucker Conditions, Journal of Mathematical Analysis and Applications, 1981, 80, pp. 544-550. [MR: 614849] [Zbl: 0463.90080] [Google Scholar]
  • 7. M. A. HANSON and B. MOND, Furhter Generalization of Convexity in Mathematical Programming, Journal Information and Optimization Science, 1982, 4, pp. 25-32. [MR: 713163] [Zbl: 0475.90069] [Google Scholar]
  • 8. V. JEYAKUMAR, Strong and Weak Invexity in Mathematical Programming, Method Oper. Res., 1985, 55, pp. 109-125. [MR: 811672] [Zbl: 0566.90086] [Google Scholar]
  • 9. V. JEYAKUMAR, Equivalence of Saddle Points and Optima, and Duality for a Class of Non-convex Problems, Journal of Mathematical Analysis and Application, 1988, 130, pp. 334-343. [MR: 929939] [Zbl: 0642.49018] [Google Scholar]
  • 10. V. JEYAKUMAR and B. MOND, On Generalized Convex Mathematical Programming, Journal of Austral. Math. Soc. (Ser. B), 1992, 34, pp. 43-53. [MR: 1168574] [Zbl: 0773.90061] [Google Scholar]
  • 11. V. PREDA, On Efficiency and Duality for Multiobjective Programs, Journal of Mathematical Analysis and Application, 1992, 166, pp. 365-377. [MR: 1160932] [Zbl: 0764.90074] [Google Scholar]
  • 12. Y. TANAKA M. FUKUSHIMA and T. IBARAKI, On Generalized Pseudo Convex Functions, Journal of Math. Analysis and Application, 1989, 144, pp. 342-355. [MR: 1027040] [Zbl: 0685.90089] [Google Scholar]
  • 13. P. WOLFE, A Duality Theorem for Nonlinear Programming, Quarterly Application Math., 1961, 19, pp. 239-244. [MR: 135625] [Zbl: 0109.38406] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.