Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S787 - S810
Published online 02 March 2021
  • J.D. Bourland and Q.J. Wu, Morphology-guided radiosurgery treatment planning and optimization for multiple isocenters. Med. Phys. 26 (1999) 2151–2160. [PubMed] [Google Scholar]
  • S. Burer, A.N. Letchford, Non-convex mixed-integer nonlinear programming: A survey. Surv. Oper. Res. Manage. Sci. 17 (2012) 97–106. [Google Scholar]
  • J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd edition. Springer-Verlag, New York, NY (1999). [Google Scholar]
  • A. Drud, CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems. Math. Program. 31 (1985) 153–191. [Google Scholar]
  • D.Z. Du, P. Pardalos and J. Wang, Vol. 55 of Discrete Mathematical Problems with Medical Applications. American Mathematical Society, Providence, RI (2000). [Google Scholar]
  • M. Ferris and D. Shepard, Optimization of Gamma Knife Radiosurgery. In: Vol. 55 of Discrete Mathematical Problems with Medical Applications, edited by D.Z. Du, P. Pardalos, J. Wang. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, Providence, RI (2000) 27–44. [CrossRef] [Google Scholar]
  • M. Ferris, J. Lim and D. Shepard, An optimization approach for the radiosurgery treatment planning. SIAM J. Optim. 13 (2003) 921–937. [Google Scholar]
  • C.A. Floudas, Nonlinear and Mixed-integer Optimization: Fundamentals and Applications. Oxford University Press, Oxford (1995). [Google Scholar]
  • S. Jitprapaikulsarn, An optimization-based treatment planner for gamma knife radiosurgery, Ph.D. thesis, Case Western Reserve University, Cleveland, OH (2005). [Google Scholar]
  • J.E. Jones, On the Determination of Molecular Fields. II. From the Equation of State of a Gas. In: Vol. 106 of Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society of London, London (1924) 463–477. [Google Scholar]
  • L. Liberti, N. Maculan and Y. Zhang, Optimal configuration of gamma ray machine radiosurgery units: The sphere covering subproblem. Optim. Lett. 3 (2009) 109–121. [Google Scholar]
  • J. Lim, Optimization in radiation treatment planning, Ph.D. thesis, University of Wisconsin, Madison, WI (2002). [Google Scholar]
  • T. Maekawa, Self-intersections of offsets of quadratic surfaces: Part I, explicit surfaces. Eng. Comput. 14 (1998) 1–13. [Google Scholar]
  • T. Maekawa, Self-intersections of offsets of quadratic surfaces: Part II, implicit surfaces. Eng. Comput. 14 (1998) 14–22. [Google Scholar]
  • W.J. Morokoff and R.E. Caflisch, Quasi-monte carlo integration. J. Comput. Phys. 122 (1995) 218–230. [Google Scholar]
  • T. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes. Atti Acad. Naz. Lincei. Rend. VI 21 (1935) 562–567. [Google Scholar]
  • R.Q. Nascimento, A.F.U.S. Macambira, L.F. Cabral, R.V. Pinto, The discrete ellipsoid covering problem: A discrete geometric programming approach. Discret. Appl. Math. 164 (2014) 276–285. [Google Scholar]
  • I.I. Paddick, A simple scoring ratio to index the conformity of radiosurgical treatment plans. J. Neurosurg. 93 (2000) 219–222. [PubMed] [Google Scholar]
  • P. Pardalos and H. Edwin, Vol. 26 of Handbook of Optimization in Medicine, Series Springer Optimization and its Applications. Springer US, New York, NY (2009). [Google Scholar]
  • R.V. Pinto, O problema de recobrimento de sólidos por esferas de diâmetros diferentes. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro (2015). [Google Scholar]
  • E. Shaw, R. Kline, M. Gillin, L. Souhami, A. Hirschfeld, R. Dinapoli, et al., Radiation therapy oncology group: Radiosurgery quality assurance guidelines. Int. J. Radiat. Oncol. Biol. Phys. 27 (1993) 1231–1239. [PubMed] [Google Scholar]
  • D.M. Shepard, M.C. Ferris, R. Ove and L. Ma, Inverse treatment planning for gamma knife radiosurgery. Med. Phys. 27 (2000) 2748–2756. [PubMed] [Google Scholar]
  • A. Soutou and Y. Dai, Global optimization approach to unequal sphere packing problems in 3D. J. Optim. Theory Appl. 114 (2002) 671–694. [Google Scholar]
  • K. Bezdek, Classical Topics in Discrete Geometry. Springer US, New York, NY (2010). [Google Scholar]
  • C. Uhler and S.J. Wright, Packing ellipsoids with overlap. Soc. Ind. Appl. Math. 55 (2013) 4. [Google Scholar]
  • M.B.K. Venceslau, O problema de recobrimento mínimo de um corpo em três dimensões por esferas de diferentes raios. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro (2015). [Google Scholar]
  • H.M. Venceslau, D.C. Lubke and A.E. Xavier, Optimal covering of solid bodies by spheres via the hyperbolic smoothing technique. Optim. Meth. Softw. 30 (2014) 391–403. [Google Scholar]
  • A.E. Xavier and A.A.F.D. Oliveira, Optimal covering of plane domains by circles via hyperbolic smoothing. J. Glob. Optim. 31 (2005) 493–504. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.