Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S765 - S785
Published online 02 March 2021
  • M. Aouchiche and P. Hansen, Nordhaus-Gaddum relations for proximity and remoteness in graphs. Comput. Math. Appl. 59 (2010) 2827–2835. [Google Scholar]
  • M. Aouchiche and P. Hansen, Proximity and remoteness in graphs: results and conjectures. Networks 58 (2011) 95–102. [Google Scholar]
  • M. Aouchiche and P. Hansen, Proximity, remoteness and distance eigenvalues of a graph. Discrete Appl. Math. 213 (2016) 17–25. [Google Scholar]
  • M. Aouchiche and P. Hansen, Proximity, remoteness and girth in graphs. Discrete Appl. Math. 222 (2017) 31–39. [Google Scholar]
  • M. Aouchiche, G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs. 20. Automated comparison of graph invariants. MATCH Commun. Math. Comput. Chem. 58 (2007) 365–384. [Google Scholar]
  • K. Balakrishnan, B. Brešar, M. Changat, S. Klavžar, A. Vesel and P. Žigert, Equal opportunity networks, distance-balanced graphs, and Wiener game. Discrete Optim. 12 (2014) 150–154. [Google Scholar]
  • F. Bergeron, P. Leroux and G. Labelle, Combinatorial Species and Tree-like Structures. Cambridge University Press, Cambridge (1998). [Google Scholar]
  • F. Buckley and M. Lewinter, A note on graphs with diameter-preserving spanning trees. J. Graph Theory 12 (1988) 525–528. [Google Scholar]
  • F. Buckley and F. Harary, Distance in Graphs. Addison-Wesley Publishing Company, Redwood City, CA (1990). [Google Scholar]
  • P. Dankelmann, Proximity, remoteness and minimum degree. Discrete Appl. Math. 184 (2015) 223–228. [Google Scholar]
  • A.A. Dobrynin, Infinite family of transmission irregular trees of even order. Discrete Math. 342 (2019) 74–77. [Google Scholar]
  • R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs. Czechoslovak Math. J. 26 (1976) 283–296. [Google Scholar]
  • L.C. Freeman, Centrality in social networks. Conceptual clarification. Social Networks 1 (1979) 215–239. [Google Scholar]
  • J. Golbeck, Analyzing the Social Web. Morgan Kaufmann, Burlington, MA (2013) 25–44. [Google Scholar]
  • F. Harary, Status and contrastatus. Sociometry 22 (1959) 23–43. [Google Scholar]
  • F. Harary and G. Prins, The number of homeomorphically irreducible trees, and other species. Acta Math. 101 (1959) 141–162. [Google Scholar]
  • J. Haslegrave, Extremal results on average subtree density of series-reduced trees. J. Combin. Theory Ser. B. 107 (2014) 26–41. [Google Scholar]
  • C. Jordan, Sur les assemblages de lignes. J. Reine Angew. Math. 70 (1869) 185–190. [Google Scholar]
  • A.N.C. Kang and D.A. Ault, Some properties of a centroid of a free tree. Inf. Process. Lett. 4 (1975/76) 18–20. [Google Scholar]
  • O. Kariv and S.L. Hakimi, An algorithmic approach to network location problems. II: The p-medians. SIAM J. Appl. Math. 37 (1979) 539–560. [Google Scholar]
  • M. Krnc and R. Škrekovski, Centralization of transmission in networks. Discrete Math. 338 (2015) 2412–2420. [Google Scholar]
  • C. Liang, B. Zhou and H. Guo, Minimum status, matching and domination of graphs. To appear in: Comp. J. (2020) 10.1093/comjnl/bxaa057. [Google Scholar]
  • H. Lin and B. Zhou, The distance spectral radius of graphs with given number of odd vertices. Electron. J. Linear Algebra 31 (2016) 286–305. [Google Scholar]
  • C. Lin, W.H. Tsai, J.L. Shang and Y.J. Zhang, Minimum statuses of connected graphs with fixed maximum degree and order. J. Comb. Optim. 24 (2012) 147–161. [Google Scholar]
  • S. Majstorović and G. Caporossi, Bounds and relations involving adjusted centrality of the vertices of a tree. Graphs Combin. 31 (2015) 2319–2334. [Google Scholar]
  • O.E. Polansky and D. Bonchev, The minimum distance number of trees. MATCH Commun. Math. Comput. Chem. 21 (1986) 341–344. [Google Scholar]
  • R. Rissner and R.E. Burkard, Bounds on the radius and status of graphs. Networks 64 (2014) 76–83. [Google Scholar]
  • J. Sedlar, Remoteness, proximity and few other distance invariants in graphs. Filomat. 27 (2013) 1425–1435. [Google Scholar]
  • L. Šoltés, Transmission in graphs: a bound and vertex removing. Math. Slovaca 41 (1991) 11–16. [Google Scholar]
  • D. Vukičević and G. Caporossi, Network descriptors based on betweenness centrality and transmission and their extremal values. Discrete Appl. Math. 161 (2013) 2678–2686. [Google Scholar]
  • B. Zelinka, Medians and peripherians of trees. Arch. Math. (Brno) 4 (1968) 87–95. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.