Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S741 - S763
DOI https://doi.org/10.1051/ro/2020003
Published online 02 March 2021
  • J. Abello, M. Resende and S. Sudarsky, Massive quasi-clique detection, edited by J. Abello and J. Vitter. In: Proceedings of the 5th Latin American Symposium on the Theory of Informatics. Springer-Verlag Berlin Heidelberg (2002) 598–612. [Google Scholar]
  • R. Aiex, M. Resende and C.C. Ribeiro, Probability distribution of solution time in GRASP: an experimental investigation. J. Heuristics 8 (2002) 343–373. [Google Scholar]
  • R. Aiex, M. Resende and C.C. Ribeiro, TTTPLOTS: a Perl program to create time-to-target plots. Optim. Lett. 1 (2007) 355–366. [Google Scholar]
  • J.C. Bean, Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 2 (1994) 154–160. [Google Scholar]
  • BHOSLIB, Benchmarks with hidden optimum solutions for graph problems. http://networkrepository.com/ (2004). Online reference, last visited on June 7, 2018. [Google Scholar]
  • J.S. Brandão, T.F. Noronha, M.G.C. Resende and C.C. Ribeiro, A biased random-key genetic algorithm for single-round divisible load scheduling. Int. Trans. Oper. Res. 22 (2015) 823–839. [Google Scholar]
  • J.S. Brandão, T.F. Noronha, M.G.C. Resende and C.C. Ribeiro, A biased random-key genetic algorithm for scheduling het- erogeneous multi-round systems. Int. Trans. Oper. Res. 27 (2017) 1061–1077. [Google Scholar]
  • M. Brunato, H. Hoos and R. Battiti, On effectively finding maximal quasi-cliques in graphs, Learning and Intelligent Optimization edited by V. Maniezzo, R. Battiti and J.-P. Watson. In: Vol. 5313 of Lecture Notes in Computer Science. Springer, Berlin (2008) 41–55. [Google Scholar]
  • T.A. Davis and Y. Hu, The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38 (2011) 1–25. [Google Scholar]
  • FICO, FICO Xpress Optimization Suite 7.6. http://www.fico.com/en/products/fico-xpress-optimization-suite (2017). [Google Scholar]
  • J.F. Gonçalves and M.G.C. Resende, Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17 (2011) 487–525. [Google Scholar]
  • J.F. Gonçalves, M.G.C. Resende and R.F. Toso, Biased and unbiased random key genetic algorithms: an experimental analysis. In: Abstracts of the 10th Metaheuristics International Conference. Singapore (2013). [Google Scholar]
  • H. Hoos and T. Stützle, Evaluation of Las Vegas algorithms – Pitfalls and remedies, edited by G. Cooper and S. Moral. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison (1998) 238–245. [Google Scholar]
  • D.S. Johnson, Cliques, coloring, and satisfiability: second DIMACS implementation challenge. In: Vol. 26 of Dimacs Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence (1996). [Google Scholar]
  • R.M. Karp, Reducibility among combinatorial problems. In: Complexity of Computer Computations, edited by R.E. Miller and J.W. Thatcher. Plenum, New York (1972) 85–103. [Google Scholar]
  • M. López-Ibánez, J. Dubois-Lacoste, T. Stützle and M. Birattari, The IRACE package: Iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011). [Google Scholar]
  • T.F. Noronha, M.G.C. Resende and C.C. Ribeiro, A biased random-key genetic algorithm for routing and wavelength assign- ment. J. Global Optim. 50 (2011) 503–518. [Google Scholar]
  • A.B. Oliveira, A. Plastino and C.C. Ribeiro, Construction heuristics for the maximum cardinality quasi-clique problem. In: Abstracts of the 10th Metaheuristics International Conference. Singapore (2013) 84. [Google Scholar]
  • F.M. Pajouh, Z. Miao and B. Balasundaram, A branch-and-bound approach for maximum quasi-cliques. Ann. Oper. Res. 216 (2014) 145–161. [Google Scholar]
  • G. Pastukhov, A. Veremyev, V. Boginski and O.A. Prokopyev, On maximum degree-based -quasi-clique problem: complexity and exact approaches. Networks 71 (2018) 136–152. [Google Scholar]
  • J. Pattillo, A. Veremyev, S. Butenko and V. Boginski, On the maximum quasi-clique problem. Discrete Appl. Math. 161 (2013) 244–257. [Google Scholar]
  • L. Pérez Cáceres, M. López-Ibáñez and T. Stützle, An analysis of parameters of IRACE. In: Proceedings of the 14th European Conference on Evolutionary Computation in Combinatorial Optimization. Vol. 8600 of Lecture Notes in Computer Science. Springer, Berlin (2014) 37–48. [Google Scholar]
  • B.Q. Pinto, C.C. Ribeiro, I. Rosseti and A. Plastino, A biased random-key genetic algorithm for solving the maximum quasi- clique problem. Eur. J. Oper. Res. 271 (2018) 849–865. [Google Scholar]
  • M.G.C. Resende and C.C. Ribeiro, Biased-random key genetic algorithms: an advanced tutorial. In: Proceedings of the 2016 Genetic and Evolutionary Computation Conference – GECCO’16 Companion Volume. Association for Computing Machinery, Denver (2016) 483–514. [Google Scholar]
  • C.C. Ribeiro and J.A. Riveaux, An exact algorithm for the maximum quasi-clique problem. Int. Trans. Oper. Res. 26 (2019) 2199–2229. [Google Scholar]
  • R.A. Rossi and N.K. Ahmed, Coloring large complex networks. Soc. Network Anal. Min. 4 (2014) 1–37. [Google Scholar]
  • R.A. Rossi and N.K. Ahmed, The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015) 4292–4293. [Google Scholar]
  • E.C. Sewell, An improved algorithm for exact graph coloring, Cliques, Coloring, and Satisfiability, edited by D.S. Johnson and M.A. Trick. In: Vol. 26 of 2nd DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society (1996) 359–373. [Google Scholar]
  • W. Spears and K. de Jong, On the virtues of parameterized uniform crossover, edited by R. Belew and L. Booker. Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufman, San Mateo (1991) 230–236. [Google Scholar]
  • R.F. Toso and M.G.C. Resende, A C++ application programming interface for biased random-key genetic algorithms. Optim. Methods Softw. 30 (2015) 81–93. [Google Scholar]
  • A. Veremyev, O.A. Prokopyev, S. Butenko, and E.L. Pasiliao, Exact MIP-based approaches for finding maximum quasi-clique and dense subgraph. Comput. Optim. App. 64 (2016) 177–214. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.