Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S863 - S872
DOI https://doi.org/10.1051/ro/2020017
Published online 02 March 2021
  • H. Balakrishnan, A. Cami, N. Deo and R.D. Dutton, On the complexity of finding optimal global alliances. J. Combin. Math. Combin. Comput. 58 (2006) 23–31. [Google Scholar]
  • M. Blidia, M. Chellali, R. Lounes and F. Maffray, Characterizations of trees with a unique minimum locating-dominating sets. J. Combin. Math. Combin. Comput. 76 (2011) 225–232. [Google Scholar]
  • M. Bouzefrane and M. Chellali, On the global offensive alliance number of a tree. Opuscula Math. 29 (2009) 223–228. [Google Scholar]
  • M. Bouzefrane and M. Chellali, A note on global alliances in trees. Opuscula Math. 31 (2011) 153–158. [Google Scholar]
  • M. Bouzefrane and S. Ouatiki, On the global offensive alliance in unicycle graphs. AKCE Int. J. Graphs Comb. 15 (2018) 72–78. [Google Scholar]
  • M. Chellali, Offensive alliances in bipartite graphs. J. Combin. Math. Combin. Comput. 73 (2010) 245–255. [Google Scholar]
  • M. Chellali and T.W. Haynes, Trees with unique minimum paired domination sets. Ars Combin. 73 (2004) 3–12. [Google Scholar]
  • M. Chellali and T.W. Haynes, A characterization of trees with unique minimum double domination sets. Util. Math. 83 (2010) 233–242. [Google Scholar]
  • M. Chellali and N.J. Rad, Trees with unique Roman dominating functions of minimum weight. Discrete Math. Algorithms Appl. 06 (2014) 1450038. [Google Scholar]
  • M. Chellali and L. Volkmann, Independence and global offensive alliance in graphs. Australas. J. Combin. 47 (2010) 125–131. [Google Scholar]
  • O. Favaron, G. Fricke, W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, R.C. Laskar and R.D. Skaggs, Offensive alliances in graphs. Discuss. Math. Graph Theory 24 (2004) 263–275. [Google Scholar]
  • H. Fernau, J.A. Rodríguez-Velázquez and J.M. Sigarreta, Offensive alliances in graphs. Discrete Appl. Math. 157 (2009) 177–182. [Google Scholar]
  • M. Fischermann, Block graphs with unique minimum dominating sets. Discrete Math. 240 (2001) 247–251. [Google Scholar]
  • M. Fischermann and U.D.E. Triesch, Domination parameters and their unique realizations, Ph.D. thesis. Techn. Hochsch. Bibl. (2002). [Google Scholar]
  • M. Fischermann and L. Volkmann, Unique minimum domination in trees. Australas. J. Combin. 25 (2002) 117–124. [Google Scholar]
  • M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets. Util. Math. 63 (2003) 229–238. [Google Scholar]
  • M. Fischermann and L. Volkmann, Unique independence, upper domination and upper irredundance in graphs. J. Combin. Math. Combin. Comput. 47 (2003) 237–249. [Google Scholar]
  • M. Fischermann, D. Rautenbach and L. Volkmann, Maximum graphs with a unique minimum dominating set. Discrete Math. 260 (2003) 197–203. [Google Scholar]
  • M. Fischermann, L. Volkmann and I. Zverovich, Unique irredundance, domination, and independent domination in graphs. Discrete Math. 305 (2005) 190–200. [Google Scholar]
  • M. Fraboni and N. Shank, Maximum graphs with unique minimum dominating set of size two. Australas. J. Combin. 46 (2010) 91–99. [Google Scholar]
  • G. Gunther, B. Hartnell, L. Markus and D. Rall, Graphs with unique minimum dominating sets. In: Vol. 101 of Proc. 25th S.E. Int. Conf. Combin., Graph Theory, and Computing, Congr. Numer., Springer, New York, NY (1994) 55–63. [Google Scholar]
  • A. Harutyunyan, Some bounds on global alliances in trees. Discrete Appl. Math. 161 (2013)1739–1746. [Google Scholar]
  • A. Harutyunyan, Global offensive alliances in graphs and random graphs. Discrete Appl. Math. 164 (2014) 522–526. [Google Scholar]
  • T.W. Haynes and M.A. Henning, Trees with unique minimum total dominating sets. Discuss. Math. Graph Theory 22 (2002) 233–246. [Google Scholar]
  • T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs. Marcel Dekker, New York, NY (1998). [Google Scholar]
  • T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker, New York, NY (1998). [Google Scholar]
  • J. Hedetniemi, On unique minimum dominating sets in some cartesian product graphs. Discuss. Math. Graph Theory 34 (2015) 615–628. [Google Scholar]
  • J. Hedetniemi, On unique minimum dominating sets in some repeated cartesian products. Australas. J. Combin. 62 (2015) 91–99. [Google Scholar]
  • J. Hedetniemi, On unique realizations of domination chain parameters. J. Combin. Math. Combin. Comput. 101 (2017) 193–211. [Google Scholar]
  • G. Hopkins and W. Staton, Graphs with unique maximum independent sets. Discrete Math. 57 (1985) 245–251. [Google Scholar]
  • P. Kristiansen, S.M. Hedetniemi and S.T. Hedetniemi, Alliance in graphs. J. Comb. Math. Combin. Comput. 48 (2004) 157–177. [Google Scholar]
  • K. Ouazine, H. Slimani and A. Tari, Alliances in graphs: parameters, properties and applications-a survey. AKCE Int. J. Graphs Comb. 15 (2018) 115–154. [Google Scholar]
  • N.J. Radm, A note on the global offensive alliances in graphs. Discrete Appl Math 250 (2018) 373–337. [Google Scholar]
  • J.A. Rodríguez-Velázquez and J.M. Sigarreta, Global offensive alliances in graphs. Electron. Notes Discrete Math. 25 (2006) 157–164. [Google Scholar]
  • J.A. Rodríguez-Velázquez and J.M. Sigarreta, Spectral study of alliances in graphs. Discuss. Math. Graph Theory 27 (2007) 143–157. [Google Scholar]
  • W. Siemes, J. Topp and L. Volkmann, On unique independent sets in graphs. In Vol. 131 of Discrete Math. Elsevier, New York, NY (1994) 279–285. [Google Scholar]
  • J. Topp, Graphs with unique minimum edge dominating sets and graphs with unique maximum independent sets of vertices. Discrete Math. 121 (1993) 199–210. [Google Scholar]
  • I.G. Yero and J.A. Rodriguez-Velázquez, Computing global offensive alliances in Cartesian product graphs. Discrete Appl. Math. 161 (2013) 284–293. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.