Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S873 - S884
DOI https://doi.org/10.1051/ro/2020018
Published online 02 March 2021
  • A. Auslender and M. Teboulle, Entropic proximal decomposition methods for convex programs and variational inequalities. Math. Program. Ser. A 91 (2001) 33–47. [Google Scholar]
  • A. Auslender and M. Teboulle, Interior projection-like methods for monotone variational inequalities. Math. Program. Ser. A 104 (2005) 39–68. [Google Scholar]
  • A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16 (2006) 697–725. [Google Scholar]
  • A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12 (1999) 31–40. [Google Scholar]
  • A. Auslender, M. Teboulle and S. Ben-Tiba, Interior proximal and multiplier methods based on second order homogeneous functionals. Math. Oper. Res. 24 (1999) 645–668. [Google Scholar]
  • D.P. Bertsekas and E.M. Gafni, Projection method for variational inequalities with applications to the traffic assignment problem. Math. Program. Study 17 (1982) 139–159. [Google Scholar]
  • R.S. Burachik and J. Dutta, Inexact proximal point methods for variational inequality problems. SIAM J. Optim. 20 (1998) 2653–2678. [Google Scholar]
  • R.S. Burachik and A.N. Iusem, A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8 (1998) 197–216. [Google Scholar]
  • G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems. Math. Program. Ser. A 64 (1994) 81–101. [Google Scholar]
  • J. Eckstein, Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. 83 (1998) 113–123. [Google Scholar]
  • M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems. North-Holland, Amsterdam (1983). [Google Scholar]
  • D. Gabay, Chapter IX applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15 (1983) 299–331. [Google Scholar]
  • R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, Philadelphia, PA (1989). [Google Scholar]
  • A. Kaplan and R. Tichatschke, On inexact generalized proximal methods with a weakened error tolerance criterion. Optimization 53 (2004) 3–17. [Google Scholar]
  • M. Li and X.M. Yuan, An improved proximal-based decomposition method for structured monotone variational inequalities. Appl. Math. Mech. 28 (2007) 1659–1668. [Google Scholar]
  • Z.Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46 (1993) 157–178. [Google Scholar]
  • A. Nagurney, Network Economics: A Variational Inequality Approach. Springer Science & Business Media 10 (2013). [Google Scholar]
  • B.T. Polyak, Introduction to Optimization. Optimization Software, Publications Division, New York, NY (1987). [Google Scholar]
  • R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, NJ (1970). [Google Scholar]
  • R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149 (1970) 75–88. [Google Scholar]
  • O. Sarmiento, E.A. Papa Quiroz and P.R. Oliveira, A proximal multiplier method for separable convex minimization. Optimization 65 (2016) 501–537. [Google Scholar]
  • M.V. Solodov and B.F. Svaiter, An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Math. Oper. Res. 25 (2000) 214–230. [Google Scholar]
  • M. Tao and X.M. Yuan, On the O(1/t) convergence rate of alternating direction method with logarithmic-quadratic proximal regularization. SIAM J. Optim. 22 (2012) 1431–1448. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.