Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1551 - S1583
DOI https://doi.org/10.1051/ro/2020040
Published online 02 March 2021
  • H. Ahn and M.H. Le, An insight into the specification of the input-output set for DEA-based bank efficiency measurement. Manage. Rev. Q. 64 (2014) 3–37. [Google Scholar]
  • A. Amirteimoori, A. Emrouznejad and L. Khoshandam, Classifying flexible measures in data envelopment analysis: a slacks-based measure. Measurement 46 (2013) 4100–4107. [Google Scholar]
  • N.K. Avkiran, The evidence of efficiency gains: the role of mergers and the benefits to the public. J. Banking Finance 23 (1999) 991–1013. [Google Scholar]
  • B. Banerjee, Banking sector efficiency in new EU member states: a survey of cross-country evidence. Eastern Eur. Econ. 50 (2012) 81–115. [Google Scholar]
  • R.D. Banker and R. Natarajan, Evaluating contextual variables affecting productivity using data envelopment analysis. Oper. Res. 56 (2008) 48–58. [Google Scholar]
  • R.D. Banker, R. Natarajan and D. Zhang, Two-stage estimation of the impact of contextual variables in stochastic frontier production function models using data envelopment analysis: second stage OLS versus bootstrap approaches. Eur. J. Oper. Res. 278 (2019) 368–384. [Google Scholar]
  • D. Bates, M. Maechler, B. Bolker, S. Walker, R.H. Bojesen Christensen, H. Singmann, B. Dai, F. Scheipl, G. Grothendieck, P. Green, J. Fox, lme4: Linear mixed-effects models using “Eigen” and S4. R package version 1.1-19. Available from: https://CRAN.R-project.org/package=lme4 (2018). [Google Scholar]
  • S.A. Berg, F.R. Forsund and E.S. Jansen, Technical efficiency of Norwegian banks: the non-parametric approach to efficiency measurement. J. Prod. Anal. 2 (1991) 127–142. [Google Scholar]
  • A.N. Berger and D.B. Humphrey, Efficiency of financial institutions: international survey and directions for future research. Eur. J. Oper. Res. 98 (1997) 175–212. [Google Scholar]
  • A.N. Berger, J.H. Leusner and J.J. Mingo, The efficiency of bank branches. J. Monetary Econ. 40 (1997) 141–162. [Google Scholar]
  • M. Berkelaar, et al. lpSolve: Interface to “Lp solve” v. 5.5 to solve linear/integer programs. R package version 5.6.13. Available from: https://CRAN.R-project.org/package=lpSolve (2015). [Google Scholar]
  • A. Bhattacharyya, C.A.K. Lovell and P. Sahay, The impact of liberalization on the productive efficiency of Indian commercial banks. Eur. J. Oper. Res. 98 (1997) 332–345. [Google Scholar]
  • P. Bogetoft and L. Otto, Benchmarking: Benchmark and frontier analysis using DEA and SFA. R package version 0.26. Available from: https://CRAN.R-project.org/package=Benchmarking (2015). [Google Scholar]
  • M. Boďda, Market power and efficiency as the source of performance in banking: a case study of the Slovak banking sector. Int. Rev. Appl. Econ. 32 (2017) 589–619. [Google Scholar]
  • M. Boďda, Zmena produktivity vo viacročných obdobiach: Hicksov-Moorsteenov index, jeho dekompozícia a banková aplikácia [Productivity change in multi-year periods: the Hicks-Moorsteen index, its decomposition and bank application]. Politická ekonomie 67 (2019) 157–180. [Google Scholar]
  • M. Boďda and E. Zimková, Efficiency in the Slovak banking industry: A comparison of three approaches. Prague Econ. Pap. 24 (2015) 434–451. [Google Scholar]
  • M. Boďda and E. Zimková, Malmquist index analysis of the recent development of the Slovak banking sector from two different angles. Econ. Change Restructuring 50 (2017) 95–131. [Google Scholar]
  • S. Bradley, G. Johnes and J. Millington, The effect of competition on the efficiency of secondary schools in England. Eur. J. Oper. Res. 135 (2001) 545–568. [Google Scholar]
  • H.C. Bravo, Rcsdp: R interface to the CSDP semidefinite programming library. R package version 0.1.55. Available from: https://CRAN.R-project.org/package=Rcsdp (2016). [Google Scholar]
  • K.P. Burnham and D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edition. Springer, New York (2002). [Google Scholar]
  • V. Calcagno, glmulti: Model selection and multimodel inference made easy. R package version 1.0.7. Available from: https://CRAN.R-project.org/package=glmulti (2013). [Google Scholar]
  • B. Casu and P. Molyneux, A comparative study of efficiency in European banking. Appl. Econ. 35 (2003) 1865–1876. [Google Scholar]
  • B. Casu and C. Girardone, Integration and efficiency convergence in EU banking markets. Omega 38 (2010) 260–267. [Google Scholar]
  • Y. Chen, W.D. Cook, C. Kao and J. Zhu, Network DEA pitfalls: divisional efficiency and frontier projection. In: Data envelopment analysis: a handbook on the modelling of internal structures and networks, edited by W.D. Cook and J. Zhu. Springer, New York (2014) 31–54. [Google Scholar]
  • J.A. Chilingerian and D. Sherman, Health-care applications: from hospitals to physicians, from productive efficiency to quality frontiers. In: Handbook on data envelopment analysis, 2nd edition, edited by W.W. Cooper, L.M. Seiford and J. Zhu. Springer, New York (2011), 445–493. [Google Scholar]
  • W.D. Cook, K. Tone and J. Zhu, Data envelopment analysis: prior to choosing a model. Omega 44 (2014) 1–4. [Google Scholar]
  • W.W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd edition. Springer, New York (2007). [Google Scholar]
  • D.R. Cox and E.J. Snell, The choice of variables in observational studies. J. R. Stat. S. Ser. C (Appl. Stat.) 23 (1974) 51–59. [Google Scholar]
  • C. Daraio and L. Simar, Advanced robust and nonparametric methods in efficiency analysis. In: Methodology and Applications. Springer, New York (2007). [Google Scholar]
  • C.S. Davis, Statistical Methods for the Analysis of Repeated Measurements. Springer, New York (2002). [Google Scholar]
  • K. De Witte and R.C. Marques, Designing performance incentives, an international benchmark study in the water sector. Cent. Eur. J. Oper. Res. 18 (2010) 189–220. [Google Scholar]
  • L. Drake, M.J.B. Hall and R. Simper, Bank modelling methodologies: a comparative non-parametric analysis of efficiency in the Japanese banking sector. J. Int. Financial Markets Inst. Money 19 (2009) 1–15. [Google Scholar]
  • M. Duygun Fethi and F. Pasiouras, Assessing bank efficiency and performance with operational research and artificial intelligence techniques: a survey. Eur. J. Oper. Res. 204 (2010) 189–198. [Google Scholar]
  • R.G. Dyson, R. Allen, A.S. Camanho, V.V. Podinovski and E.A. Shale, Pitfalls and protocols in DEA. Eur. J. Oper. Res. 132 (2001) 245–259. [Google Scholar]
  • A. Emrouznejad and K. de Witte, COOPER-framework: a unified process for non-parametric projects. Eur. J. Oper. Res. 207 (2010) 1573–1586. [Google Scholar]
  • O. Felix Ayadi, A.O. Adebayo and E. Omolehinwa, Bank performance measurement in a developing economy: an application of data envelopment analysis. Manage. Finance 24 (1998) 5–16. [Google Scholar]
  • H. Fukuyama and R. Matousek, Efficiency of Turkish banking: two-stage network system. Variable returns to scale model. J. Int. Financial Markets Inst. Money 21 (2011) 75–91. [Google Scholar]
  • H. Fukuyama and R. Matousek, Modelling bank performance: a network DEA approach. Eur. J. Oper. Res. 259 (2017) 721–732. [Google Scholar]
  • H. Fukuyama and W.L. Weber, A slacks-based inefficiency measure for a two-stage system with bad outputs. Omega 38 (2010) 398–409. [Google Scholar]
  • H. Fukuyama and W.L. Weber, Measuring Japanese bank performance: a dynamic network DEA approach. J. Product. Anal. 44 (2015) 249–264. [Google Scholar]
  • D.U.A. Galagedera and P. Silvapulle, Experimental evidence on robustness of data envelopment analysis. J. Oper. Res. Soc. 54 (2003) 654–660. [Google Scholar]
  • I.M. García-Sánchez, L. Rodríguez-Domínguez and J. Parra-Domínguez, Yearly evolution of police efficiency in Spain and explanatory factors. Cent. Eur. J. Oper. Res. 21 (2013) 31–62. [Google Scholar]
  • C. Genest and F. Verret, Locally most powerful rank tests of independence for copula models. J. Nonparametric Stat. 17 (2005) 521–539. [Google Scholar]
  • I. Gijbels and J. Mielniczuk, Estimating the density of a copula function. Commun. Stat. – Theory Methods 19 (1990) 445–464. [Google Scholar]
  • R. Gulati and S. Kumar, Analysing banks’ intermediation and operating efficiencies using the two-stage network DEA model: the case of India. Int. J. Product. Perform. Manage. 66 (2017) 500–516. [Google Scholar]
  • E.N. Gunay and A. Tektas, Efficiency analysis of the Turkish banking sector in precrisis and crisis period: a DEA approach. Contemp. Econ. Policy 24 (2006) 418–431. [Google Scholar]
  • G. Heinze and D. Dunkler, Five myths about variable selection. Transplant Int. 30 (2017) 6–10. [Google Scholar]
  • G. Heinze, C. Wallish and D. Dunkler, Variable selection – a review and recommendations for the practicing statistician. Biometrical J. 60 (2018) 431–449. [Google Scholar]
  • D. Holod and H.F. Lewis, Resolving the deposit dilemma: a new DEA bank efficiency model. J. Banking Finance 35 (2011) 2801–2810. [Google Scholar]
  • W.C. Hunter and S.G. Timme, Core deposits and physical capital: a reexamination of bank scale economies and efficiency with quasi-fixed inputs. J. Money Credit Banking 27 (1995) 165–185. [Google Scholar]
  • Z. Iršová and T. Havránek, Bank efficiency in transitional countries: sensitivity to stochastic frontier design. Transition Stud. Rev. 18 (2011) 230–270. [Google Scholar]
  • L. Jenkins and M. Anderson, A multivariate statistical approach to reducing the number of variables in data envelopment analysis. Eur. J. Oper. Res. 147 (2003) 51–61. [Google Scholar]
  • I. Jemric and B. Vujcic, Efficiency of banks in Croatia: a DEA approach. Comp. Econ. Stud. 44 (2002) 169–193. [Google Scholar]
  • H. Joe, Relative entropy measures of multivariate dependence. J. Am. Stat. Assoc. 84 (1989) 157–164. [Google Scholar]
  • H. Joe, Dependence Modelling with Copulas. CRC Press/Taylor & Francis, Boca Raton (2015). [Google Scholar]
  • A.L. Johnson and T. Kuosmanen, One-stage and two-stage DEA estimation of the effects of contextual variables. Eur. J. Oper. Res. 220 (2012) 559–570. [Google Scholar]
  • F. Kamarudin, F. Sufian, F.W. Loong and N.A.M. Anwar, Assessing the domestic and foreign Islamic banks efficiency: insights from selected Southeast Asian countries. Future Bus. J. 3 (2017) 33–46. [Google Scholar]
  • K. Kenjegalieva, R. Simper, T. Weyman-Jones and V. Zelenyuk, Comparative analysis of banking production frameworks in Eastern European financial markets. Eur. J. Oper. Res. 198 (2009) 326–340. [Google Scholar]
  • K. Kočišová, Application of the DEA on the measurement of efficiency in the EU countries. Agric. Econ. – Czech 61 (2015) 51–62. [Google Scholar]
  • I. Kouiki and A. Al-Nasser, The implication of banking competition: evidence from African countries. Res. Int. Bus. Finance 39 (2017) 878–895. [Google Scholar]
  • R. Levine, Financial development and economic growth: views and agenda. J. Econ. Literature 35 (1997) 688–726. [Google Scholar]
  • Y. Li, X. Shi, M. Yang and L. Liang, Variable selection in data envelopment analysis via Akaike’s information criteria. Ann. Oper. Res. 253 453–476. [Google Scholar]
  • G.H. Lim and D.S. Randawa, Competition, liberalization and efficiency: evidence from a two-stage banking model on banks in Hong Kong and Singapore. Manage. Finance 31 (2005) 52–77. [Google Scholar]
  • E.H. Linfoot, An informational measure of correlation. Info. Control 1 (1957) 85–89. [Google Scholar]
  • Y. Luo, G. Bi and L. Liang, Input/output indicator selection for DEA efficiency evaluation: an empirical study of Chinese commercial banks. Expert Syst. App. 39 (2012) 1118–1123. [Google Scholar]
  • D. Marchetti and P. Wanke, Brazil’s rail freight transport: efficiency analysis using two-stage DEA and cluster-driven public policies. Soc.-Econ. Plan. Sci. 59 (2017) 26–42. [Google Scholar]
  • M.M. Mostafa, Modeling the efficiency of top Arab banks: a DEA-neural network approach. Expert Syst. App. 36 (2009) 309–320. [Google Scholar]
  • T. Nagler and K. Wen, kdecopula: Kernel smoothing for bivariate copula densities. R package, version 0.9.1. Available from: https://CRAN.R-project.org/package=kdecopula (2017). [Google Scholar]
  • R.B. Nelsen, An Introduction to Copulas, 2nd edition. Springer, New York (2006). [Google Scholar]
  • J. Ouenniche, S. Carrales, K. Tone and H. Fukuyama, An account of DEA-based contributions in the banking sector. In: Advances in DEA Theory and Applications: With Extensions to Forecasting Models. Wiley, New York (2017) 141–171. [Google Scholar]
  • J.M. Pastor, F. Pérez and J. Quesada, Efficiency analysis in banking firms: an international comparison. Eur. J. Oper. Res. 98 (1997) 395–407. [Google Scholar]
  • J.T. Pastor, J.L. Ruiz and I. Sirvent, A statistical test for nested radial DEA models. Oper. Res. 50 (2002) 728–735. [Google Scholar]
  • R Core Team, R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from: http://www.r-project.org (2017). [Google Scholar]
  • S.C. Ray, Data Envelopment Analysis: Theory and Techniques for Economics and Operations Research. Cambridge University Press, Cambridge (2004). [Google Scholar]
  • A. Resti, Evaluating the cost-efficiency of the Italian banking system: What can be learned from the joint application of parametric and non-parametric techniques. J. Banking Finance 21 (1997) 221–250. [Google Scholar]
  • A.N. Rezitis, Productivity growth in the Greek banking industry: a non-parametric approach. J. Appl. Econ. 9 (2006) 119–138. [Google Scholar]
  • T. Rosenmayer, Using data envelopment analysis: a case of universities. Rev. Econ. Perspect. 14 (2014) 34–54. [Google Scholar]
  • J. Ruggiero, Impact assessment of input omission on DEA. Int. J. Inf. Technol. Decision Making 84 (2005) 359–368. [Google Scholar]
  • M. Sathye, Efficiency of banks in a developing economy: the case of India. Eur. J. Oper. Res. 148 (2003) 662–671. [Google Scholar]
  • L. Simar and P.W. Wilson, Estimation and inference in two-stage, semi-parametric models of productive efficiency. J. Econometrics 136 (2007) 31–64. [Google Scholar]
  • L. Simar and P.W. Wilson, Two-stage DEA: caveat emptor. J. Econometrics 36 (2011) 205–218. [Google Scholar]
  • P. Smith, Model misspecification in data envelopment analysis. Ann. Oper. Res. 73 (1997) 233–252. [Google Scholar]
  • T. Subramanyam and C.S. Reddy, Measuring the risk efficiency in Indian commercial banking – a DEA approach. J. Econ. Bus. 11 (2008) 76–105. [Google Scholar]
  • F. Sufian, Determinants of bank efficiency during unstable macroeconomic environment: empirical evidence from Malaysia. Res. Int. Bus. Finance 23 (2009) 54–77. [Google Scholar]
  • F. Sufian, F. Kamarudin and A. Nassir, Determinants of efficiency in the Malaysian banking sector: does bank origins matter? Intell. Econ. 10 (2016) 38–54. [Google Scholar]
  • E. Thanassoulis, Introduction to the Theory and Application of Data Envelopment Analysis. Kluwer Academic Publishers, Norwell (2001). [Google Scholar]
  • M. Toloo, M. Barat and A. Masoumzadeh, Selective measures in data envelopment analysis. Ann. Oper. Res. 226 (2015) 623–642. [Google Scholar]
  • K. Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]
  • K. Tone and M. Tsutsui, Network DEA: a slacks-based measure approach. GRIPS Policy Information Center Discussion Paper: 07-08. Accessed 13 October 2017. Available from: http://www.grips.ac.jp/r-center/wp-content/uploads/07-08.pdf (2007). [Google Scholar]
  • K. Tone and M. Tsutsui, Network DEA: a slacks-based measure approach. Eur. J. Oper. Res. 197 (2009) 243–252. [Google Scholar]
  • E. Tortosa-Ausina, Bank cost efficiency and output specification. J. Prod. Anal. 18 (2002) 199–222. [Google Scholar]
  • T. Triki, I. Kouki, M.B. Dhaou and P. Calice, Bank regulation and efficiency: What works for Africa? Res. Int. Bus. Finance 39 (2017) 183–205. [Google Scholar]
  • T. Ueda and Y. Hoshiai, Application of principal component analysis for parsimonious summarization of DEA inputs and/or outputs. J. Oper. Res. Soc. Jpn. 40 (1997) 466–478. [Google Scholar]
  • J.M. Wagner and D.G. Shimshak, Stepwise selection of variables in data envelopment analysis: procedures and managerial perspectives. Eur. J. Oper. Res. 180 (2007) 57–67. [Google Scholar]
  • K. Wang, W. Huang, J. Wu and Y.-N. Liu, Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega 44 (2014) 5–20. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.